Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell–cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF–brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma–CSF interphase.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0992-6) contains supplementary material, which is available to authorized users.
Hyh mutant mice develop long-lasting hydrocephalus and represent a good model for investigating neuropathologic events associated with hydrocephalus. The study of their brains by use of lectin binding, bromodeoxyuridine labeling, immunochemistry, and scanning electron microscopy revealed that certain events related to hydrocephalus followed a well-defined pattern. A program of neuroepithelium/ependyma denudation was initiated at embryonic day 12 and terminated at the end of the second postnatal week. After the third postnatal week the denuded areas remained permanently devoid of ependyma. In contrast, a selective group of ependymal areas resisted denudation throughout the lifespan. Ependymal denudation triggered neighboring astrocytes to proliferate. These astrocytes expressed particular glial markers and formed a superficial cell layer replacing the lost ependyma. The loss of the neuroepithelium/ependyma layer at specific regions of the ventricular walls and at specific stages of brain development would explain the fact that only certain brain structures had abnormal development. Therefore, commissural axons forming the corpus callosum and the hippocampal commissure displayed abnormalities, whereas those forming the anterior and posterior commissures did not; and the brain cortex was not homogenously affected, with the cingular and frontal cortices being the most altered regions. All of these telencephalic alterations developed at stages when hydrocephalus was not yet patent at the lateral ventricles, indicating that abnormal neural development and hydrocephalus are linked at the etiologic level, rather than the former being a consequence of the latter. All evidence collected on hydrocephalic hyh mutant mice indicates that a primary alteration in the neuroepithelium/ependyma cell lineage triggers both hydrocephalus and abnormalities in telencephalic development.
Neural stem cells persist after embryonic development in the subventricular zone (SVZ) niche and produce new neural cells during postnatal life; ependymal cells are a key component associated with this neurogenic niche. In the animal model of human hydrocephalus, the hyh mouse, the ependyma of the lateral ventricles is progressively lost during late embryonic and early postnatal life and disappears from most of the ventricular surface throughout its life span. To determine the potential consequences of this loss on the SVZ, we characterized the abnormalities in this neurogenic niche in hyh mice. There was overall disorganization and a marked reduction of proliferative cells in the SVZ of both newborn and adult hyh hydrocephalic mice in vivo; neuroblasts were displaced to the ventricular surface, and their migration through the rostral migratory stream was reduced. The numbers of resident neural progenitor cells in hyh mice were also markedly reduced, but they were capable of proliferating, forming neurospheres, and differentiating into neurons and glia in vitro in a manner indistinguishable from that of wild-type progenitor cells. These findings suggest that the reduction of proliferative activity observed in vivo is not caused by a cell autonomous defect of SVZ progenitors but is a consequence of a reduced number of these cells. Furthermore, the overall tissue disorganization of the SVZ and displacement of neuroblasts imply alterations in the neurogenic niche of postnatal hyh mice.
Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D receptor (D R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D R/MOR interaction. In addition, D R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.
In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.