Consistent and precise power changes can be induced in the optic of commercially available IOLs in vivo by using a femtosecond laser to create a refractive-index shaping lens. The laser treatment of the IOLs was biocompatible.
Abstract:The chemical basis for the alteration of the refractive properties of an intraocular lens with a femtosecond laser was investigated. Three different microscope setups have been used for the study: Laser Induced Fluorescence (LIF) microscopy, Raman microscopy and coherent anti-Stokes Raman Scattering (CARS) microscopy. Photo-induced hydrolysis of polymeric material in aqueous media produces two hydrophilic functional groups: acid group and alcohol group. The spectral signatures identify two of the hydrophilic polar molecules as N-phenyl-4-(phenylazo)-benzenamine (C 18 H 15 N 3 ) and phenazine-1-carboxylic acid (C 13 H 8 N 2 O 2 ). The change in hydrophilicity results in a negative refractive index change in the laser-treated areas.
Power adjustment of a commercially available hydrophobic acrylic blue light-filtering IOL by a femtosecond laser produced an accurate change in dioptric power while not significantly affecting the quality of the IOL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.