SUMMARY Cells undergoing xenobiotic or oxidative stress activate the transcription factor Nrf2, which initiates an intrinsic “stress surveillance” pathway. We recently found that the cytokine IL-17D effects a form of extrinsic stress surveillance by inducing antitumor immunity, but how IL-17D is regulated remains unknown. Here, we show that Nrf2 induced IL-17D in cancer cell lines. Moreover, both Nrf2 and IL-17D were induced in primary tumors as well as during viral infection in vivo. Expression of IL-17D in tumors and virally infected cells is essential for optimal protection of the host as il17d−/− mice experienced a higher incidence of tumors and exacerbated viral infections compared to WT animals. Moreover, activating Nrf2 to induce IL-17D in established tumors led to natural killer cell-dependent tumor regression. These data demonstrate that Nrf2 can initiate both intrinsic and extrinsic stress surveillance pathways and highlight the use of Nrf2 agonists as immune therapies for cancer and infection.
The cell surface heparan sulfate proteoglycan syndecan-1 (CD138) modulates the activity of chemokines, cytokines, integrins, and other adhesion molecules which play important roles in the regulation of inflammation. We have previously shown that syndecan-1-deficient murine leukocytes display increased interactions with endothelial cells and increased diapedesis in vivo and in vitro. In this study, we demonstrate that syndecan-1 has an important function as a negative modulator in the murine contact allergy model of oxazolone-mediated delayed-type hypersensitivity (DTH). Following elicitation of the DTH response, syndecan-1-deficient mice showed an increase in leukocyte recruitment, resulting in an increased and prolonged edema formation. Expression of the cytokines TNF-␣ and IL-6 of the chemokines CCL5/RANTES and CCL-3/MIP-1␣ and of the adhesion molecule ICAM-1 were significantly increased in syndecan-1-deficient compared with wild-type mice. In wild-type mice, syndecan-1 mRNA and protein expression was reduced during the DTH response. The differentially increased adhesion of syndecan-1-deficient leukocytes to ICAM-1 was efficiently inhibited in vitro by CD18-blocking Abs, which emerges as one mechanistic explanation for the anti-inflammatory effects of syndecan-1. Collectively, our results show an important role of syndecan-1 in the contact DTH reaction, identifying syndecan-1 as a novel target in anti-inflammatory therapy.
Expression of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases (RTK) has been associated with cancer progression, metastasis, and drug resistance. In immune cells, TAM RTKs can dampen inflammation in favor of homeostatic wound-healing responses, thus potentially contributing to the evasion of cancer cells from immune surveillance. Here we characterize the small-molecule RXDX-106 as a selective and potent pan-TAM RTK inhibitor with slow dissociation kinetics and significant antitumor activity in multiple syngeneic tumor models. Expression of AXL and MER on both immune and tumor cells increased during tumor progression. Tumor growth inhibition (TGI) following treatment with RXDX-106 was observed in wild-type mice and was abrogated in immunodeficient mice, suggesting that the antitumor activity of RXDX-106 is, in part, due to the presence of immune cells. RXDX-106-mediated TGI was associated with increased tumor-infiltrating leukocytes, M1-polarized intratumoral macrophages, and activation of natural killer cells. RXDX-106 proportionally increased intratumoral CD8 þ T cells and T-cell function as indicated by both IFNg production and LCK phosphorylation (pY393). RXDX-106 exhibited its effects via direct actions on TAM RTKs expressed on intratumoral macrophages and dendritic cells, leading to indirect activation of other immune cells in the tumor. RXDX-106 also potentiated the effects of an immune checkpoint inhibitor, a-PD-1 Ab, resulting in enhanced antitumor efficacy and survival. Collectively, these results demonstrate the capacity of RXDX-106 to inhibit tumor growth and progression and suggest it may serve as an effective therapy against multiple tumor types. Significance: The pan-TAM small-molecule kinase inhibitor RXDX-106 activates both innate and adaptive immunity to inhibit tumor growth and progression, indicating its clinical potential to treat a wide variety of cancers.
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
CD99 is a crucial regulator of the transmigration (diapedesis) of leukocytes through the blood vessel wall. Here, we report that CD99 acts at 2 different steps in the extravasation process. In agreement with previous antibody-blocking experiments, we found that CD99 gene inactivation caused neutrophil accumulation between venular endothelial cells and the basement membrane in the inflamed cremaster. Unexpectedly, we additionally found that leukocyte attachment to the luminal surface of the venular endothelium was impaired in the absence of CD99. Intravital video microscopy revealed that CD99 supported rapid chemokine-induced leukocyte arrest. Inhibition of leukocyte attachment and extravasation were both solely due to the absence of CD99 on endothelial cells, whereas CD99 on leukocytes was irrelevant. Therefore, we searched for heterophilic ligands of endothelial CD99 on neutrophils. We found that endothelial cells bind to the paired immunoglobulinlike receptors (PILRs) in a strictly CD99-dependent way. In addition, endothelial CD99 was coprecipitated with PILRs from neutrophils that adhered to endothelial cells. Furthermore, soluble CD99 carrying a transferable biotin tag could transfer this tag covalently to PILR when incubated with intact neutrophils. Binding of neutrophils under flow to a surface coated with P-selectin fragment crystallizable (Fc) and intercellular adhesion molecule 1 (ICAM-1) Fc became more shear resistant if CD99 Fc was coimmobilized. This increased shear resistance was lost if neutrophils were preincubated with anti-PILR antibodies. We concluded that endothelial CD99 promotes leukocyte attachment to endothelium in inflamed vessels by a heterophilic ligand. In addition, CD99 binds to PILRs on neutrophils, an interaction that leads to increased shear resistance of the neutrophil attachment to ICAM-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.