Background Concurrent chemotherapy plus radiation therapy (chemoRT) is the standard treatment for stage IIIA(N2) non-small cell lung cancer (NSCLC), a common disease entity. Phase II studies demonstrated feasibility of resection after chemoRT with encouraging survival rates. This phase III trial compared both approaches. Methods Patients with stage T1-3pN2M0 NSCLC were randomized before induction chemoRT (2 cycles of cisplatin and etoposide [PE] concurrent with 45 Gy RT). If no progression, arm 1 underwent resection, and arm 2 continued RT uninterrupted to 61 Gy. Two additional cycles of PE were given. The primary endpoint was overall survival (OS). Findings Progression-free survival for 396 eligible patients was superior in arm 1: median 12.8 versus 10.5 months, p=0.017, hazard ratio (HR) 0.77 (0.62,0.96); 5-yr 22.4% versus 11.1%. Median OS was 23.6 versus 22.2 months, p=0.24, HR 0.87 (0.70,1.10). Five-year survivals were arm 1, 27.2% and arm 2, 20.3%; odds ratio 0.63 (0.36,1.10, p=0.10). N0 status at thoracotomy predicted median OS of 33.5 months (5-year, 41.8%). Major chemoRT toxicities were neutropenia and esophagitis. Treatment-related death occurred in 16 (7.9%) patients on arm 1, of which 14 were post-pneumonectomy; and in 4 (2.1%) on arm 2. An exploratory analysis showed improved OS for patients who underwent lobectomy versus a matched cohort on chemoRT alone, but not for those undergoing pneumonectomy (matched similarly). Interpretation There was no significant survival advantage to surgery after chemoRT, despite improved PFS. Both chemoRT with definitive RT and chemoRT followed by resection (preferably lobectomy) are options for patients with stage IIIA(N2) NSCLC.
Background:Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking.Methods:We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates.Results:There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer.Conclusions:The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth.
Purpose: Vascular endothelial growth factor (VEGF) signaling is key to tumor angiogenesis and is an important target in the development of anticancer drugs. However, VEGF receptor (VEGFR) expression in human cancers, particularly the relative expression of VEGFR-2 and VEGFR-3 in tumor vasculature versus tumor cells, is poorly defined. Experimental Design: VEGFR-2– and VEGFR-3–specific antibodies were identified and used in the immunohistochemical analysis of human primary cancers and normal tissue. The relative vascular localization of both receptors in colorectal and breast cancers was determined by coimmunofluorescence with vascular markers. Results: VEGFR-2 and VEGFR-3 were expressed on vascular endothelium but not on malignant cells in 13 common human solid tumor types (n > 400, bladder, breast, colorectal, head and neck, liver, lung, skin, ovarian, pancreatic, prostate, renal, stomach, and thyroid). The signal intensity of both receptors was significantly greater in vessels associated with malignant colorectal, lung, and breast than adjacent nontumor tissue. In colorectal cancers, VEGFR-2 was expressed on both intratumoral blood and lymphatic vessels, whereas VEGFR-3 was found predominantly on lymphatic vessels. In breast cancers, both receptors were localized to and upregulated on blood vessels. Conclusions: VEGFR-2 and VEGFR-3 are primarily localized to, and significantly upregulated on, tumor vasculature (blood and/or lymphatic) supporting the majority of solid cancers. The primary clinical mechanism of action of VEGF signaling inhibitors is likely to be through the targeting of tumor vessels rather than tumor cells. The upregulation of VEGFR-3 on tumor blood vessels indicates a potential additional antiangiogenic effect for dual VEGFR-2/VEGFR-3–targeted therapy. Clin Cancer Res; 16(14); 3548–61. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.