Macrophages (M ) at sites of acute tissue injury accumulate and export cholesterol quickly. This metabolic activity is likely dependent on the physiological function of a major acute-phase protein, serum amyloid A 2.1 (SAA2.1), that is synthesized by hepatocytes as part of a systemic response to acute injury. Our previous studies using cholesterol-laden J774 mouse M showed that an N-terminal domain of SAA2.1 inhibits acyl-CoA:cholesterol acyltransferase activity, and a C-terminal domain enhances cholesteryl ester hydrolase activity. The net effect of this enzymatic regulation is to drive intracellular cholesterol to its unesterified state, the form readily exportable to an extracellular acceptor such as HDL. Here, we demonstrate that these domains from mouse SAA2.1, when delivered in liposomal formulation, are effective at preventing and reversing aortic lipid lesions in apolipoprotein E-deficient mice maintained on high-fat diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.