DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients.
Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumour cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumours in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.