Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.
The potential effects of removal of olfactory input on adult neurogenesis in the olfactory bulb were examined. Olfactory organs of adult zebrafish were permanently and completely ablated by cautery and animals were exposed to bromodeoxyuridine then examined following short (4 hour) or long (3 week) survival periods. Short survival times allowed analysis of cell proliferation in the olfactory bulb. Long survival times permitted investigation of survival of adult-formed cells. Deafferentation did not immediately affect the dividing cells in the bulb but did affect the number of adult-formed cells, some of which expressed a neuronal marker, present in the bulb three weeks later. Thus, afferent removal influenced the fate of newly formed cells by impacting subsequent divisions, maturation, or survival of those cells. One week of deafferentation altered the pattern of cell genesis, with a significant increase in the number of dividing cells located in the olfactory bulb and also in the ventral telencephalic proliferation zone. Sham surgery did not impact either proliferation or survival of adultformed cells in the olfactory bulb, suggesting that the deafferentation effect is specific. Thus, afferent innervation is necessary for normal cell proliferation and maintenance of the olfactory bulb in adult zebrafish.
Synopsis: Checkpoint inhibitor immunotherapy can be associated with severe immune-related adverse events that can limit therapeutic efficacy. The authors show that Probody therapeutics effectively localize checkpoint inhibition to sites of tumor growth, thereby reducing toxicities and maintaining therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.