for the Canadian Neonatal Network IMPORTANCE Neonatal hypothermia has been associated with higher mortality and morbidity; therefore, thermal control following delivery is an essential part of neonatal care. Identifying the ideal body temperature in preterm neonates in the first few hours of life may be helpful to reduce the risk for adverse outcomes.OBJECTIVES To examine the association between admission temperature and neonatal outcomes and estimate the admission temperature associated with lowest rates of adverse outcomes in preterm infants born at fewer than 33 weeks' gestation. DESIGN, SETTING, AND PARTICIPANTSRetrospective observational study at 29 neonatal intensive care units in the Canadian Neonatal Network. Participants included 9833 inborn infants born at fewer than 33 weeks' gestation who were admitted between January 1, 2010, and December 31, 2012.EXPOSURE Axillary or rectal body temperature recorded at admission. MAIN OUTCOMES AND MEASURESThe primary outcome was a composite adverse outcome defined as mortality or any of the following: severe neurological injury, severe retinopathy of prematurity, necrotizing enterocolitis, bronchopulmonary dysplasia, or nosocomial infection. The relationships between admission temperature and the composite outcome as well as between admission temperature and the components of the composite outcome were evaluated using multivariable analyses.RESULTS Admission temperatures of the 9833 neonates were distributed as follows: lower than 34.5°C (1%); 34.5°C to 34.9°C (1%); 35.0°C to 35.4°C (3%); 35.5°C to 35.9°C (7%); 36.0°C to 36.4°C (24%); 36.5°C to 36.9°C (38%); 37.0°C to 37.4°C (19%); 37.5°C to 37.9°C (5%); and 38.0°C or higher (2%). After adjustment for maternal and infant characteristics, the rates of the composite outcome, severe neurological injury, severe retinopathy of prematurity, necrotizing enterocolitis, bronchopulmonary dysplasia, and nosocomial infection had a U-shaped relationship with admission temperature (α > 0 [P < .05]). The admission temperature at which the rate of the composite outcome was lowest was 36.8°C (95% CI, 36.7°C-37.0°C). Rates of severe neurological injury, severe retinopathy of prematurity, necrotizing enterocolitis (95% CI, 36.3°C-36.7°C), bronchopulmonary dysplasia, and nosocomial infection (95% CI, 36.9°C-37.3°C) were lowest at admission temperatures ranging from 36.5°C to 37.2°C. CONCLUSIONS AND RELEVANCEThe relationship between admission temperature and adverse neonatal outcomes was U-shaped. The lowest rates of adverse outcomes were associated with admission temperatures between 36.5°C and 37.2°C.
The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients [1][2][3][4] . However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise 3,5 .In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a) 8 , allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice 9,10 . However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer 11 . More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia 11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse 15 . Whilst this model has proven useful in the assessment of potential neuroprotective agents 16 , it is less suitable for understanding mechanisms underlying symptoms of PD, as this model often fails to induce motor deï¬cits, and shows a wide variability in the extent of lesion 17, 18 .Here we have developed a stable unilateral 6-OHDA-lesioned mouse model of PD by direct administration of 6-OHDA into the MFB, which consistently causes >95% loss of striatal dopamine (as measured by HPLC), as well as producing the behavioural imbalances observed in the well characterised unilateral 6-OHDA-lesioned rat model of PD. This newly developed mouse model of PD will prove a valuable tool in understanding the mechanisms underlying generation of parkinsonian symptoms. Video LinkThe video component of this article can be found at http://www.jove.com/video/3234/ Protocol 1. Housing and preparation of mice 1. Maintain a colony of bacterial artificial chromosome (BAC) driven transgenic mice 8 (Mutant Mouse Regional Resource Center (MMRRC) FVB in a 12:12 h light-dark cycle ...
Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to corticostriatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5 ± 14.6%; LTD protocol 177.7 ± 22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3 ± 4.0% and LTD protocol: 63.3 ± 8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4± 22.0% and LTD protocol: 52.1± 18.5% of baseline. Direct pathway: LTP protocol: 140.7 ± 7.3% and LTD protocol: 58.4 ± 6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9 ± 21.3% and LTD protocol 52.0 ± 14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6 ± 13.2% and LTD protocol 166.7 ± 15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs, which underlies the symptomatic benefits of l-DOPA. Switching from bidirectional to unidirectional plasticity drives global changes in striatal pathway excitability, and underpins parkinsonism and dyskinesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.