The discovery of the severe combined immunodeficiency (scid) mouse mutation has provided a tool for establishment of small animal models as hosts for the in vivo analysis of normal and malignant human pluripotent hemopoietic stem cells. Intravenous injection of irradiated scid mice with human bone marrow, cord blood, or G-CSF cytokine-mobilized peripheral blood mononuclear cells, all rich in human hemopoietic stem cell activity, results in the engraftment of a human hemopoietic system in the murine recipient. This model has been used to identify a pluripotent stem cell, termed "scid-repopulating cell" (SRC) that is more primitive than any of the hemopoietic stem cell populations identified using the currently available in vitro methodology. In this review, we describe the development and use of this model
Inbred C.B-17-scid/scid mice accept human peripheral blood mononuclear cell (PBMC) xenografts and are susceptible to human immunodeficiency virus type 1 (HIV-1) infection, but low levels of PBMC engraftment impede use of this system in HIV research. This report describes the effect of host strain background on human PBMC engraftment and HIV infectivity in scid mice. Back-crossing the scid mutation to the NOD/Lt strain (designated NOD/LtSz-scid/scid) increased the percentage of engrafted human PBMC in recipient spleens by 5- to 10-fold compared with that in C.B-17-scid/scid stock. Four weeks after human PBMC-injected mice were infected with HIV-1, 79% of NOD/LtSz-scid/scid spleens harbored replicating virus compared with only 39% of spleens in C.B-17-scid/scid mice. The NOD/LtSz-scid/scid mouse may provide a useful small animal model for studies of HIV-1.
Development of a small animal model for the in vivo study of human immunity and infectious disease remains an important goal, particularly for investigations of HIV vaccine development. NOD/Lt mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation readily support engraftment with high levels of human hematolymphoid cells. However, NOD/LtSz-scid mice are highly radiosensitive, have short life spans, and a small number develop functional lymphocytes with age. To overcome these limitations, we have backcrossed the null allele of the recombination-activating gene (Rag1) for 10 generations onto the NOD/LtSz strain background. Mice deficient in RAG1 activity are unable to initiate V(D)J recombination in Ig and TCR genes and lack functional T and B lymphocytes. NOD/LtSz-Rag1null mice have an increased mean life span compared with NOD/LtSz-scid mice due to a later onset of lymphoma development, are radioresistant, and lack serum Ig throughout life. NOD/LtSz-Rag1null mice were devoid of mature T or B cells. Cytotoxic assays demonstrated low NK cell activity. NOD/LtSz-Rag1null mice supported high levels of engraftment with human lymphoid cells and human hemopoietic stem cells. The engrafted human T cells were readily infected with HIV. Finally, NOD/LtSz-Rag1null recipients of adoptively transferred spleen cells from diabetic NOD/Lt+/+ mice rapidly developed diabetes. These data demonstrate the advantages of NOD/LtSz-Rag1null mice as a radiation and lymphoma-resistant model for long-term analyses of engrafted human hematolymphoid cells or diabetogenic NOD lymphoid cells.
Human PBMC engraft in mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation (Hu-PBL-scid mice). Hu-PBL-NOD-scid mice generate 5- to 10-fold higher levels of human cells than do Hu-PBL-C.B-17-scid mice, and Hu-PBL-NOD-scid 尾2-microglobulin-null (NOD-scid-B2mnull) mice support even higher levels of engraftment, particularly CD4+ T cells. The basis for increased engraftment of human PBMC and the functional capabilities of these cells in NOD-scid and NOD-scid-B2mnull mice are unknown. We now report that human cell proliferation in NOD-scid mice increased after in vivo depletion of NK cells. Human cell engraftment depended on CD4+ cells and required CD40-CD154 interaction, but engrafted CD4+ cells rapidly became nonresponsive to anti-CD3 Ab stimulation. Depletion of human CD8+ cells led to increased human CD4+ and CD20+ cell engraftment and increased levels of human Ig. We further document that Hu-PBL-NOD-scid mice are resistant to development of human EBV-related lymphoproliferative disorders. These disorders, however, develop rapidly following depletion of human CD8+ cells and are prevented by re-engraftment of CD8+ T cells. These data demonstrate that 1) murine NK cells regulate human cell engraftment in scid recipients; 2) human CD4+ cells are required for human CD8+ cell engraftment; and 3) once engrafted, human CD8+ cells regulate human CD4+ and CD20+ cell expansion, Ig levels, and outgrowth of EBV-related lymphoproliferative disorders. We propose that the Hu-PBL-NOD-scid model is suitable for the in vivo analysis of immunoregulatory interactions between human CD4+ and CD8+ cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.