Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Rett syndrome (RTT) is a neurodevelopmental disorder characterized by loss of acquired skills after a period of normal development in infant girls. The responsible gene, encoding methyl-CpG binding protein 2 (MeCP2), was recently discovered. Here we explore the spectrum of phenotypes resulting from MECP2 mutations. Both nonsense (R168X and R255X) and missense (R106W and R306C) mutations have been found, with multiple recurrences. R168X mutations were identified in six unrelated sporadic cases, as well as in two affected sisters and their normal mother. The missense mutations were de novo and affect conserved domains of MeCP2. All of the nucleotide substitutions involve C-->T transitions at CpG hotspots. A single nucleotide deletion, at codon 137, that creates a L138X stop codon within the methyl-binding domain was found in an individual with features of RTT and incontinentia pigmenti. An 806delG deletion causing a V288X stop in the transcription-repression domain was identified in a woman with motor-coordination problems, mild learning disability, and skewed X inactivation; in her sister and daughter, who were affected with classic RTT; and in her hemizygous son, who died from congenital encephalopathy. Thus, some males with RTT-causing MECP2 mutations may survive to birth, and female heterozygotes with favorably skewed X-inactivation patterns may have little or no involvement. Therefore, MECP2 mutations are not limited to RTT and may be implicated in a much broader phenotypic spectrum.
We screened 71 sporadic and 7 familial Rett syndrome (RTT) patients for MECP2 mutations by direct sequencing and determined the pattern of X chromosome inactivation (XCI) in 39 RTT patients. We identified 23 different disease‐causing MECP2 mutations in 54 of 71 (76%) sporadic patients and in 2 of 7 (29%) familial cases. We compared electrophysiological findings, cerebrospinal fluid neurochemistry, and 13 clinical characteristics between patients carrying missense mutations and those carrying truncating mutations. Thirty‐one of 34 patients (91%) with classic RTT had random XCI. Nonrandom XCI was associated with milder phenotypes, including a mitigated classic RTT caused by a rare early truncating mutation. Patients with truncating mutations have a higher incidence of awake respiratory dysfunction and lower levels of cerebrospinal fluid homovanillic acid. Scoliosis is more common in patients with missense mutations. These data indicate that different MECP2 mutations have similar phenotypic consequences, and random XCI plays an important role in producing the full phenotypic spectrum of classic RTT. The association of early truncating mutations with nonrandom XCI, along with the fact that chimeric mice lacking methyl‐CpG‐binding protein 2 (MeCP2) function die during embryogenesis, supports the notion that RTT is caused by partial loss of MeCP2 function. Ann Neurol 2000;47:670–679
We screened 71 sporadic and 7 familial Rett syndrome (RTT) patients for MECP2 mutations by direct sequencing and determined the pattern of X chromosome inactivation (XCI) in 39 RTT patients. We identified 23 different disease-causing MECP2 mutations in 54 of 71 (76%) sporadic patients and in 2 of 7 (29%) familial cases. We compared electrophysiological findings, cerebrospinal fluid neurochemistry, and 13 clinical characteristics between patients carrying missense mutations and those carrying truncating mutations. Thirty-one of 34 patients (91%) with classic RTT had random XCI. Nonrandom XCI was associated with milder phenotypes, including a mitigated classic RTT caused by a rare early truncating mutation. Patients with truncating mutations have a higher incidence of awake respiratory dysfunction and lower levels of cerebrospinal fluid homovanillic acid. Scoliosis is more common in patients with missense mutations. These data indicate that different MECP2 mutations have similar phenotypic consequences, and random XCI plays an important role in producing the full phenotypic spectrum of classic RTT. The association of early truncating mutations with nonrandom XCI, along with the fact that chimeric mice lacking methyl-CpG-binding protein 2 (MeCP2) function die during embryogenesis, supports the notion that RTT is caused by partial loss of MeCP2 function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.