Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ؎ SEM) of total alterations detected per tumor were 2.9 ؎ 0.7 for MI, 9.2 ؎ 1.2 for MII, and 13.3 ؎ 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13-q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5-8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.
Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether largescale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome-and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, including three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups. Correlation of DNA-based molecular stratification with clinical outcome allowed to define three major prognostic groups with characteristic genomic aberrations. The best prognosis was found in patients with IDH1/2 mutant and 1p/19q co-deleted tumors. Patients with IDH1/2 wild-type gliomas and glioblastoma-like genomic alterations, including gain on chromosome arm 7q (+7q), loss on chromosome arm 10q (-10q), TERT promoter mutation and oncogene amplification, displayed the worst outcome. Intermediate survival was seen in patients with IDH1/2 mutant, but 1p/19q intact, mostly astrocytic gliomas, and in patients with IDH1/2 wild-type gliomas lacking the +7q/-10q genotype and TERT promoter mutation. This molecular subgrouping stratified patients into prognostically distinct groups better than histological classification. Addition of gene expression data to this genomic classifier did not further improve prognostic stratification. In summary, DNA-based molecular profiling of WHO grade II and III gliomas distinguishes biologically distinct tumor groups and provides prognostically relevant information beyond histological classification as well as IDH1/2 mutation and 1p/19q co-deletion status.
We investigated 67 meningothelial tumors (20 benign meningiomas, 34 atypical meningiomas, and 13 anaplastic meningiomas) for losses of genetic information from chromosome arms 1p and 9p, as well as for deletion, mutation, and expression of the tumor suppressor genes CDKN2A (p16(INKa)/MTS1), p14(ARF), CDKN2B (p15(INK4b)/MTS2) (all located at 9p21) and CDKN2C (1p32). Comparative genomic hybridization and microsatellite analysis showed losses on 1p in 11 anaplastic meningiomas (85%), 23 atypical meningiomas (68%), and 5 benign meningiomas (25%). One atypical meningioma with loss of heterozygosity on 1p carried a somatic CDKN2C mutation (c.202C>T: R68X). Losses on 9p were found in five anaplastic meningiomas (38%), six atypical meningiomas (18%), and one benign meningioma (5%). Six anaplastic meningiomas (46%) and one atypical meningioma (3%) showed homozygous deletions of the CDKN2A, p14(ARF), and CDKN2B genes. Two anaplastic meningiomas carried somatic point mutations in CDKN2A (c.262G>T: E88X and c.262G>A: E88K) and p14(ARF) (c.305G>T: G102V and c.305G>A: G102E). One anaplastic meningioma, three atypical meningiomas, and one benign meningioma without a demonstrated homozygous deletion or mutation of CDKN2A, p14(ARF), or CDKN2B lacked detectable transcripts from at least one of these genes. Hypermethylation of CDKN2A, p14(ARF), and CDKN2B could be demonstrated in one of these cases. Taken together, our results indicate that CDKN2C is rarely altered in meningiomas. However, the majority of anaplastic meningiomas either show homozygous deletions of CDKN2A, p14(ARF), and CDKN2B, mutations in CDKN2A and p14(ARF), or lack of expression of one or more of these genes. Thus, inactivation of the G(1)/S-phase cell-cycle checkpoint is an important aberration in anaplastic meningiomas.
Pitt-Hopkins syndrome (PHS) is a rare syndromic mental disorder, which is mainly characterized by severe motor and mental retardation including absent language development, a characteristic facial gestalt and episodes of hyperventilation. We report on a female patient with PHS showing severe mental retardation with absent speech, pronounced muscular hypotonia, ataxia, distinctive facial features, such as a coarse face, a broad nasal bridge and a wide mouth, and hyperventilation attacks. In this patient, genomic profiling by array-based comparative genomic hybridization and fluorescence in situ hybridization studies detected and confirmed a de novo 0.5 Mb deletion in 18q21.2 containing a single gene, the basic helix-loop-helix transcription factor TCF4. cDNA and genomic analyses in the patient and her parents demonstrated TCF4 haploinsufficiency as the underlying cause of the disease. Analysis of the embryonal expression pattern of the Danio rerio ortholog, tcf4, by whole-mount in situ hybridization showed a highly specific expression domain in the pallium of the telencephalon during late somitogenesis, when the patterning of the zebrafish brain is advanced and neural differentiation commences. Later expression domains were restricted to several regions in the central nervous system, including continued expression in the pallium of the telencephalon, and starting expression in the diencephalon (thalamus, ventral thalamus and posterior tuberculum), the midbrain tegmentum, the hindbrain and the branchial arches. This expression pattern correlates with the clinical phenotype. Our results show that haploinsufficiency of TCF4 causes PHS and suggest that D. rerio is a valuable model to study the molecular pathogenesis of PHS and the role of TCF4 in brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.