Ultracold atom-ion mixtures are gaining increasing interest due to their potential applications in ultracold and state-controlled chemistry, quantum computing, and many-body physics. Here, we studied the dynamics of a single ground-state cooled ion during few, to many, Langevin (spiraling) collisions with ultracold atoms. We measured the ion's energy distribution and observed a clear deviation from the Maxwell-Boltzmann distribution, characterized by an exponential tail, to a power-law distribution best described by a Tsallis function. Unlike previous experiments, the energy scale of atom-ion interactions is not determined by either the atomic cloud temperature or the ion's trap residual excess-micromotion energy. Instead, it is determined by the force the atom exerts on the ion during a collision which is then amplified by the trap dynamics. This effect is intrinsic to ion Paul traps and sets the lower bound of atom-ion steady-state interaction energy in these systems. Despite the fact that our system is eventually driven out of the ultracold regime, we are capable of studying quantum effects by limiting the interaction to the first collision when the ion is initialized in the ground state of the trap.
Quantum control of chemical reactions is an important goal in chemistry and physics. Ultracold chemical reactions are often controlled by preparing the reactants in specific quantum states. Here we demonstrate spin-controlled atom–ion inelastic (spin-exchange) processes and chemical (charge-exchange) reactions in an ultracold Rb-Sr+ mixture. The ion’s spin state is controlled by the atomic hyperfine spin state via spin-exchange collisions, which polarize the ion’s spin parallel to the atomic spin. We achieve ~ 90% spin polarization due to the absence of strong spin-relaxation channel. Charge-exchange collisions involving electron transfer are only allowed for (RbSr)+ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wave function with the singlet molecular manifold and therefore also the reaction rate. Our observations agree with theoretical predictions.
Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid-state systems. Here, we describe a system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the µK regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the µK regime even for ion crystals of several ions. We give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a powerlaw distribution of the ion's energy. We overview the coherent and non-coherent thermometry tools which we used to characterize the ion's energy distribution after single to many atom-ion collisions.
We study the time-dependent fluorescence of an initially hot, multi-level, single atomic ion trapped in a radio-frequency Paul trap during Doppler cooling. We have developed an analytical model that describes the fluorescence dynamics during Doppler cooling which is used to extract the initial energy of the ion. While previous models of Doppler cooling thermometry were limited to atoms with a two-level energy structure and neglected the effect of the trap oscillating electric fields, our model applies to atoms with multi-level energy structure and takes into account the influence of micromotion on the cooling dynamics. This thermometry applies to any initial energy distribution. We experimentally test our model with an ion prepared in a coherent, thermal and Tsallis energy distributions. CONTENTS
Sympathetic cooling is the process of energy exchange between a system and a colder bath. We investigate this fundamental process in an atom-ion experiment where the system is composed of a single ion trapped in a radio-frequency Paul trap and prepared in a classical oscillatory motion with total energy of ∼200 K, and the bath is an ultracold cloud of atoms at μK temperature. We directly observe the sympathetic cooling dynamics with single-shot energy measurements during one to several collisions in two distinct regimes. In one, collisions predominantly cool the system with very efficient momentum transfer leading to cooling in only a few collisions. In the other, collisions can both cool and heat the system due to nonequilibrium dynamics in the presence of the ion trap's oscillating electric fields. While the bulk of our observations agree well with a molecular-dynamics simulation of hard-sphere (Langevin) collisions, a measurement of the scattering angle distribution reveals forward-scattering (glancing) collisions which are beyond the Langevin model. This work paves the way for further nonequilibrium and collision dynamics studies using the well-controlled atom-ion system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.