This article presents the concept of reinforcement learning, which prepares a static direct approach for consistent control problems, and adjusts cutting-edge techniques for testing effectiveness in benchmark Mujoco locomotion tasks. This model was designed and developed to use the Mujoco Engine to track the movement of robotic structures and eliminate problems with assessment calculations using perceptron’s and random search algorithms. Here, the machine learning model is trained to make a series of decisions. The humanoid model is considered to be one of the most difficult and ongoing problems to solve by applying state-of-the-art RL technology. The field of machine learning has a great influence on the training model of the RL environment. Here we use random seed values to provide continuous input to achieve optimized results. The goal of this project is to use the Mujoco engine in a specific context to automatically determine the ideal behavior of the robot in an augmented reality environment. Enhanced random search was introduced to train linear guidelines for achieving the efficiency of Mujoco roaming tasks. The results of these models highlight the variability of the Mujoco benchmark task and lead to efficiently optimized rewards
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.