Introduction Atherosclerotic diseases of the carotid are a primary cause of cerebrovascular events such as stroke. For the diagnosis and monitoring angiography, ultrasound- or magnetic resonance-based imaging is used which requires costly hardware. In contrast, the auscultation of carotid sounds and screening for bruits – audible patterns related to turbulent blood flow – is a simple examination with comparably little technical demands. It can indicate atherosclerotic diseases and justify further diagnostics but is currently subjective and examiner dependent. Methods We propose an easy-to-use computer-assisted auscultation system for a stable and reproducible acquisition of vascular sounds of the carotid. A dedicated skin-transducer-interface was incorporated into a handheld device. The interface comprises two bell-shaped structures, one with additional acoustic membrane, to ensure defined skin contact and a stable propagation path of the sound. The device is connected wirelessly to a desktop application allowing real-time visualization, assessment of signal quality and input of supplementary information along with storage of recordings in a database. An experimental study with 5 healthy subjects was conducted to evaluate usability and stability of the device. Five recordings per carotid served as data basis for a wavelet-based analysis of the stability of spectral characteristics of the recordings. Results The energy distribution of the wavelet-based stationary spectra proved stable for measurements of a particular carotid with the majority of the energy located between 3 and 40 Hz. Different spectral properties of the carotids of one individual indicate the presence of sound characteristics linked to the particular vessel. User-dependent parameters such as variations of the applied contact pressure appeared to have minor influence on the general stability. Conclusion The system provides a platform for reproducible carotid auscultation and the creation of a database of pathological vascular sounds, which is a prerequisite to investigate sound-based vascular monitoring.
Background: Biometric sensing is a security method for protecting information and property. State-of-the-art biometric traits are behavioral and physiological in nature. However, they are vulnerable to tampering and forgery. Methods: The proposed approach uses blood flow sounds in the carotid artery as a source of biometric information. A handheld sensing device and an associated desktop application were built. Between 80 and 160 carotid recordings of 11 s in length were acquired from seven individuals each. Wavelet-based signal analysis was performed to assess the potential for biometric applications. Results: The acquired signals per individual proved to be consistent within one carotid sound recording and between multiple recordings spaced by several weeks. The averaged continuous wavelet transform spectra for all cardiac cycles of one recording showed specific spectral characteristics in the time-frequency domain, allowing for the discrimination of individuals, which could potentially serve as an individual fingerprint of the carotid sound. This is also supported by the quantitative analysis consisting of a small convolutional neural network, which was able to differentiate between different users with over 95% accuracy. Conclusion: The proposed approach and processing pipeline appeared promising for the discrimination of individuals. The biometrical recognition could clinically be used to obtain and highlight differences from a previously established personalized audio profile and subsequently could provide information on the source of the deviation as well as on its effects on the individual’s health. The limited number of individuals and recordings require a study in a larger population along with an investigation of the long-term spectral stability of carotid sounds to assess its potential as a biometric marker. Nevertheless, the approach opens the perspective for automatic feature extraction and classification.
In previous work, we demonstrated the potential of blood flow sounds for biometric authentication acquired by a custom-built auscultation device. For this purpose, we calculated the frequency spectrum for each cardiac cycle represented within the measurements based on continuous wavelet transform. The resulting spectral images were used to train a convolutional neural network based on measurements from seven users. In this work, we investigate which areas of those images are relevant for the network to correctly identify a user. Since they describe the frequencies’ energy within a cardiac cycle, this information can be used to gain knowledge on biometric properties within the signal. Therefore, we calculate the saliency maps for each input image and investigate their mean for each user, opening perspectives for further investigation of the spectral information that was found to be potentially relevant.
Cerebrovascular diseases like atherosclerosis pose a great threat to health and wellbeing of people worldwide. To enable early diagnosis and treatment of a gradually progressing occlusion of the carotid arteries, we propose the BODYTUNE system. Consisting of a custom-built auscultation device and a mobile application, it aims at enabling the monitoring of the blood flow within the carotid arteries on a regular basis at home. In this work, we present the results of a survey with 65 participants from the system target group to investigate aspects like technical affinity and experience with comparable systems. These results provide the basis on how the BODYTUNE system should be designed to be user-centered, concerns.
Auscultation methods allow a non-invasive diagnosis of cardiovascular diseases like atherosclerosis based on blood flow sounds of the carotid arteries. Since this process is highly dependent on the clinician’s experience, it is of great interest to develop automated data processing techniques for objective assessment. We have recently proposed a computerassisted auscultation system that we use to acquire carotid blood flow sounds. In this work, we present an approach for detecting artifacts within the blood flow sound caused by swallowing or coughing events. For this purpose, we first decompose the signal using a discrete wavelet transform (DTW). Then, we compute an energy ratio between the DWT scales associated with the signal information with and without artifacts using a sliding window of 1 s length. Evaluation based on Kruskal-Wallis and Wilcoxon rank-sum tests shows a statistically significant difference (p-value<.0001) between the signal with and without artifact. Therefore, the proposed method allows the identification of the studied signal artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.