We investigate why companies collaborate within the circular oriented innovation process. The purpose is to understand what motives trigger collaborative circular oriented innovation, as well as conditions, drivers and barriers. First, we define circular oriented innovation building on sustainable oriented innovation literature. Subsequently, we investigate 11 leading circular economy companies operating within the Netherlands, who developed collaborative circular oriented innovation activities. ‘Hard’ and ‘soft’ dimensions for innovation are identified and applied to delineate the drivers and barriers for collaborative circular oriented innovation. Our findings indicate that collaborations are conducted by entrepreneurially-minded actors through sharing a vision, enthusiasm, and crucially, a credible proposition for a circular economy. Furthermore, collaboration is sought early, to co-develop the problem and solution space and integrate disparate knowledge from across the value network, to mitigate increased complexity. Motives to collaborate vary between personal and organisational, and intrinsic and extrinsic levels. Collaborations start based on a relational basis between ‘CE front-runners’ to advance knowledge through experimentation. ‘Soft’ challenges to advance collaborations towards the competitive remain around culture, and the mindset to share rewards and risks. Without suitable solutions to these challenges, collaborative circular oriented innovation could remain underdeveloped within the transition towards the systemic level.
This paper focuses on how the Internet of Things (IoT) could contribute to the transition to a circular economy (CE), through supporting circular business model and design strategies. While literature has highlighted the opportunities for IoT to support circular strategies in business, little has been published about actual implementations in practice. The aim of this study was therefore to understand how companies to date have implemented IoT for circular strategies, and how these implementations compare to the range of opportunities described in literature. To that end, a two-step approach was followed. Firstly, building on academic literature, a framework was developed which categorizes different IoT-enabled circular strategies. The framework recognizes tracking, monitoring, control, optimization, and design evolution as IoT capabilities. Efficiency in use, increased utilization, and product lifetime extension are distinguished as circular in-use strategies, while reuse, remanufacturing, and recycling are distinguished as circular looping strategies. The framework complements previously published work, as it adds additional detail to the categorization, and allows for easy mapping of diverse cases. Secondly, 40 cases from practice were analyzed and mapped to the framework. This way, practice-based insights were derived about the current distribution of IoT-enabled circular strategies implemented in practice. The results show that current implementation of IoT-enabled circular strategies mainly supports two strategies in the use phase: efficiency in use and product lifetime extension. Only a small number of the reviewed cases display IoT-enabled looping (reuse, remanufacturing, and recycling). Similarly, few cases describe ‘design evolution’ for CE, i.e., the feedback of data from products in use to support circular design. Based on these results, this study identifies the need for future research to further investigate why IoT-enabled looping strategies and design evolution for circular strategies have not been implemented to scale.
Additive manufacturing, also known as 3D printing, is acknowledged for its potential to support sustainable design. In this paper, we explore whether the opportunities that additive manufacturing offers for sustainable design are also useful when designing for a circular economy, and to what extent additive manufacturing can support design for a circular economy. We performed a literature review on the sustainability aspects of additive manufacturing and held a series of interviews with designers about their 3D printed design projects to obtain in-depth information. The interviews were analysed using annotated portfolios, a novel analysis method created specifically for this research. This resulted in a visual representation of the outcomes. We found that additive manufacturing supports circular design strategies by creating opportunities to extend a product's lifespan, for instance by enabling repair or upgrades, even if these products were not originally designed for ease of repair or upgrading. However, the use of monolithic structurally complex parts that support design for recyclability may hinder high value product recovery, like repair. Besides this, the current offer of 3D printable materials should be extended with materials developed for durable use, as well as highvalue reuse. Concluding, when accounting for these drawbacks, additive manufacturing is able to support multiple product life cycles and can provide valuable contributions to a circular economy.
The reliability of coatings that are used in industrial applications critically depends on their mechanical properties. Nanoindentation and scratch testing are well-established techniques to measure some of these properties, namely the elastic modulus and hardness of coatings. In this paper, we investigate the possibility of also assessing the coating fracture toughness and the energy of adhesion between the coating and the substrate using indentation and scratch testing. Various existing and new methods are discussed, and they are illustrated by measurements on particle-filled sol-gel coatings on glass. All methods are based on the occurrence of cracking, and they are therefore only applicable to coating systems that act like brittle materials and exhibit cracking during indentation and scratching. The methods for determining the fracture toughness give comparable results, but the values still differ to within about 50%. The values of the adhesion energy obtained from different measurements are consistent, but it remains uncertain to which extent the obtained values are quantitatively correct. The results show that the methods used are promising, but more research is needed to obtain reliable quantitative results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.