SummaryMany nephrotoxic effects of drugs have been described, whereas the effect on renal development has received less attention. Nephrogenesis ceases at approximately 36 weeks of gestation, indicating that drugs administered to pregnant women and to preterm-born neonates may influence kidney development. Such an effect on renal development may lead to a wide spectrum of renal malformations (congenital anomalies of the kidney and urinary tract [CAKUT]), ranging from renal agenesis to a reduced nephron number. Any of these anomalies may have long-term sequelae, and CAKUT is the primary cause for renal replacement therapy in childhood. This review focuses on research into the effect of drug treatment during active nephrogenesis during pregnancy and in preterm-born infants. Because the effects of many widely used drugs have not been unraveled thus far, more research is needed to study the effect on renal development and long-term renal sequelae after drug treatment during nephrogenesis.
The kidney plays a central role in the clearance of drugs. However, renal drug handling entails more than glomerular filtration and includes tubular excretion and reabsorption, and intracellular metabolization by cellular enzyme systems, such as the Cytochrome P450 isoenzymes. All these processes show maturation from birth onwards, which is one of the reasons why drug dosing in children is not simply similar to dosing in small adults. As kidney development normally finishes around the 36th week of gestation, being born prematurely will result in even more immature renal drug handling. Environmental effects, such as extra-uterine growth restriction, sepsis, asphyxia, or drug treatments like caffeine, aminoglycosides, or non-steroidal anti-inflammatory drugs, may further hamper drug handling in the kidney. Dosing in preterm neonates is therefore dependent on many factors that need to be taken into account. Drug treatment may significantly hamper postnatal kidney development in preterm neonates, just like renal immaturity has an impact on drug handling. The restricted kidney development results in a lower number of nephrons that may have several long-term sequelae, such as hypertension, albuminuria, and renal failure. This review focuses on the interplay between drugs and the kidney in premature neonates.
The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/ juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/ children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies. SIGNIFICANCE STATEMENTThis review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.dependent on the specialized subcellular structural and functional properties of renal tubule epithelium, including their various transporters, metabolic activity, and membrane integrity. Therefore, the development and maturation of these processes in pediatric patients or in animals can have a profound effect on the disposition and fate of administered drug therapies that depend on the kidney for filtration, uptake, secretion, and/or metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.