The aim of this work was to develop and optimize a direct solid state polymerization (DSSP) process on a micro scale for alkyldiammonium-terephthalate salts. This was successfully demonstrated for the first time by the case of tetramethylenediammonium-terepththalate salt (4T salt). The derived polymer (PA4T) presents interesting properties, but the temperature-favored acid catalyzed cyclization of tetramethylenediamine (TMD) to mono-functional pyrrolidine and ammonia inhibits a high polymerization conversion. DSSP was performed in a thermogravimetrical analysis (TGA) chamber, and the continuously monitored weight loss was correlated to polymerization conversion via the release of water, excluding any mass and heat transfer limitations. It was found that the conditions under which the DSSP is performed and the morphology of the starting material affect both the reaction rate and the product quality. The effect of the critical process parameters, namely vent size, heating rate to reach SSP temperature, and reaction temperature were quantified by the observed mass loss and by 1 H NMR analysis. It was noticed that, besides the water formed by amidation, other volatile compounds were also released during the DSSP reaction, with main component, the TMD. In particular, it was observed that conditions favoring the evaporation of TMD also favored a higher reaction rate. The TMD loss was minimized by optimization of the aforementioned process conditions, leading to a more thermally stable and a higher molecular weight final product. The thermal stability of the PA4T was found to be inversely correlated to the concentration of carboxylic end groups present in the formed polymer.
The direct solid state polycondensation (DSSP) reaction of tetramethylenediammonium and hexamethylenediammonium terephthalate (4 T and 6 T salts) in a laboratory scale autoclave reactor was investigated. The autoclave reactor is 3 orders of magnitude larger than the TGA micro‐reactor we used previously. The larger scale reactor allows more extensive analyses such as analysis of the formed condensate by titration and allows investigation of operating conditions that are important on industrial scale, such as batch (closed system) versus semibatch (open system) operation and flow of nitrogen used. Comparing the two scales has given important insight into the parameters that are important in scaling‐up direct solid‐state polycondensation. Furthermore, the effect of scaling up on the quality of the final semiaromatic polyamide products was determined, by comparing the obtained thermal properties, the solution viscosity and the end‐group concentrations obtained by 1H‐NMR spectroscopy. When operating the open reactor with a gentle nitrogen stream, the results show that products of similar properties were obtained from the micro and the laboratory scale reactors if critical parameters like temperature and pressure time profile were kept the same. The solid character of the reacting mass was retained only when maintaining the reactor at atmospheric pressure, allowing the condensation water to be removed. When keeping the autoclave reactor closed, both polyamide (PA) products (i.e., PA4T and PA6T) were agglomerated as a result of a solid melt transition during the direct solid state polycondensation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45080.
In the current article, the effect of different techniques was investigated on the preparation of tetramethylenediammonium terephthalate (4T salt), which consists of an industrially important precursor of high‐performance polyamides. In particular, 4T salt was synthesized through solution, slurry, and solvent‐free techniques. In each case the salt was isolated as a solid, correlating for the first time the salt preparation/isolation method with attained properties and morphology. This correlation led to a generalized comparison between all synthesized 4T salt grades, aiming at understanding the preparation mechanism of 4T salt. Accordingly, highly pure 4T salt, free of any unreacted diacid traces, can be only obtained from a clear salt solution either by cooling or by nonsolvent addition. Furthermore, by altering the crystallization conditions of the salt, thermal and morphological properties can be significantly affected, which further result in a qualitative correlation with the rate of subsequent direct solid‐state polymerization (DSSP). The DSSP reactions were carried out in the microscale of a thermogravimetric chamber, where the different 4T salt grades were heated isothermally until full conversion. Polyamide grades of different thermal and analytical properties were received, underlining that the quality of the salt is a corner stone for subsequent DSSP. These findings can be further exploited also to the DSSP of other semi‐aromatic polyamides. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42987.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.