Inflorescence architecture of barley (Hordeum vulgare L.) is common among the Triticeae species, which bear one to three singleflowered spikelets at each rachis internode. Triple spikelet meristem is one of the unique features of barley spikes, in which three spikelets (one central and two lateral spikelets) are produced at each rachis internode. Fertility of the lateral spikelets at triple spikelet meristem gives row-type identity to barley spikes. Sixrowed spikes show fertile lateral spikelets and produce increased grain yield per spike, compared with two-rowed spikes with sterile lateral spikelets. Thus, far, two loci governing the row-type phenotype were isolated in barley that include Six-rowed spike1 (Vrs1) and Intermedium-C. In the present study, we isolated Sixrowed spike4 (Vrs4), a barley ortholog of the maize (Zea mays L.) inflorescence architecture gene RAMOSA2 (RA2). Eighteen coding mutations in barley RA2 (HvRA2) were specifically associated with lateral spikelet fertility and loss of spikelet determinacy. Expression analyses through mRNA in situ hybridization and microarray showed that Vrs4 (HvRA2) controls the row-type pathway through Vrs1 (HvHox1), a negative regulator of lateral spikelet fertility in barley. Moreover, Vrs4 may also regulate transcripts of barley SISTER OF RAMOSA3 (HvSRA), a putative trehalose-6-phosphate phosphatase involved in trehalose-6-phosphate homeostasis implicated to control spikelet determinacy. Our expression data illustrated that, although RA2 is conserved among different grass species, its down-stream target genes appear to be modified in barley and possibly other species of tribe Triticeae.cytokinin | EGG APPARATUS1 | grain number | yield potential
BackgroundThere is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys.ResultsA collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley.ConclusionsWe present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes.
Protein disulfide isomerases (PDIs) catalyze the correct folding of proteins and prevent the aggregation of unfolded or partially folded precursors. Whereas suppression of members of the PDI gene family can delay replication of several human and animal viruses (e.g., HIV), their role in interactions with plant viruses is largely unknown. Here, using a positional cloning strategy we identified variants of PROTEIN DISULFIDE ISOMERASE LIKE 5-1 (HvPDIL5-1) as the cause of naturally occurring resistance to multiple strains of Bymoviruses. The role of wild-type HvPDIL5-1 in conferring susceptibility was confirmed by targeting induced local lesions in genomes for induced mutant alleles, transgene-induced complementation, and allelism tests using different natural resistance alleles. The geographical distribution of natural genetic variants of HvPDIL5-1 revealed the origin of resistance conferring alleles in domesticated barley in Eastern Asia. Higher sequence diversity was correlated with areas with increased pathogen diversity suggesting adaptive selection for bymovirus resistance. HvPDIL5-1 homologs are highly conserved across species of the plant and animal kingdoms implying that orthologs of HvPDIL5-1 or other closely related members of the PDI gene family may be potential susceptibility factors to viruses in other eukaryotic species.allele mining | resistance breeding | soil-borne virus disease | chaperone
Tillers are vegetative branches that develop from axillary buds located in the leaf axils at the base of many grasses. Genetic manipulation of tillering is a major objective in breeding for improved cereal yields and competition with weeds. Despite this, very little is known about the molecular genetic bases of tiller development in important Triticeae crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum). Recessive mutations at the barley Uniculme4 (Cul4) locus cause reduced tillering, deregulation of the number of axillary buds in an axil, and alterations in leaf proximal-distal patterning. We isolated the Cul4 gene by positional cloning and showed that it encodes a BROAD-COMPLEX, TRAMTRACK, BRIC-À-BRAC-ankyrin protein closely related to Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2. Morphological, histological, and in situ RNA expression analyses indicate that Cul4 acts at axil and leaf boundary regions to control axillary bud differentiation as well as the development of the ligule, which separates the distal blade and proximal sheath of the leaf. As, to our knowledge, the first functionally characterized BOP gene in monocots, Cul4 suggests the partial conservation of BOP gene function between dicots and monocots, while phylogenetic analyses highlight distinct evolutionary patterns in the two lineages.
Viable circadian clocks help organisms to synchronize their development with daily and seasonal changes, thereby providing both evolutionary fitness and advantage from an agricultural perspective. A high-resolution mapping approach combined with mutant analysis revealed a cereal ortholog of Arabidopsis thaliana LUX ARRHYTHMO/PHYTOCLOCK 1 (LUX/PCL1) as a promising candidate for the earliness per se 3 (Eps-3A m ) locus in einkorn wheat (Triticum monococcum L.). Using delayed fluorescence measurements it was shown that Eps-3A m containing einkorn wheat accession KT3-5 had a distorted circadian clock. The hypothesis was subsequently confirmed by performing a time course study on central and output circadian clock genes, which showed arrhythmic transcript patterns in KT3-5 under constant ambient conditions, i.e., constant light and temperature. It was also demonstrated that variation in spikelet number between wild-type and mutants is sensitive to temperature, becoming negligible at 25°. These observations lead us to propose that the distorted clock is causative for both early flowering and variation in spike size and spikelet number, and that having a dysfunctional LUX could have neutral, or even positive, effects in warmer climates. To test the latter hypothesis we ascertained sequence variation of LUX in a range of wheat germplasm. We observed a higher variation in the LUX sequence among accessions coming from the warmer climate and a unique in-frame mutation in early-flowering Chinese T. turgidum cultivar 'Tsing Hua no. 559.' Our results emphasize the importance of the circadian clock in temperate cereals as a promising target for adaptation to new environments.T HE circadian clock is an intrinsic regulator of biological processes oscillating within an $24-hr period (Pittendrigh 1993). It is considered to be the main mechanism by which plants recognize the optimal photoperiod for seasonal flowering (Imaizumi 2009). Transcriptional regulation of the circadian clock has been well described in Arabidopsis (Pokhilko et al. 2012) with the latest model emphasizing the importance of the Evening Complex (EC) composed of EARLY FLOWERING 3, EARLY FLOWERING 4, and LUX AR-RHYTHMO/PHYTOCLOCK 1 (ELF3, ELF4, and LUX/PCL1) proteins (Onai and Ishiura 2005;Nusinow et al. 2011;Pokhilko et al. 2012). The EC directly represses the function of PSEUDO RESPONSE REGULATOR 9 (PRR9) and acts antagonistically to the elements expressed in the morning, including LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) (Pokhilko et al. 2012). LHY, CCA1, and PRR9 form the so-called morning loop, which becomes arrhythmic when the EC is impaired (Hazen et al. 2005; Dixon et al. 2011; Nusinow Copyright © 2014 Dixon et al. 2011;Pokhilko et al. 2012). Genetic studies have shown that the recently cloned maturity-a, (mat-a; syn. early maturity 8, eam8) locus is an ortholog of AtELF3 in barley (Hordeum vulgare L.). eam8 appears to be epistatic to eam10 (syn. ea sp ), which in turn seems to be a possible ortholog of LUX/PCL...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.