BackgroundThe immune system is a promising therapeutic target for disease modification in Parkinson's disease (PD), but appropriate immune‐related biomarkers must be identified to allow patient stratification for trials and tracking of therapeutic effects. The objective of this study was to investigate whether immune markers in peripheral blood are candidate prognostic biomarkers through determining their relationship with disease progression in PD.MethodsSerum samples were collected in incident PD cases and age‐matched controls. Subjects were clinically evaluated at baseline and 18 and 36 months. Ten cytokines and C‐reactive protein were measured, with data reduction using principal‐component analysis, and relationships between component scores and motor (MDS Unified Parkinson's Disease Rating Scale — part 3) and cognitive (Mini Mental State Examination [MMSE]) measures of disease severity/progression were investigated.ResultsTNF‐α, IL1‐β, IL‐2, and IL‐10 were higher in PD (n = 230) than in controls (n = 93), P ≤ 0.001). Principal‐component analysis of log‐transformed data resulted in a 3‐component solution explaining 51% of the variance. Higher “proinflammatory” and lower “anti‐inflammatory” component scores were associated with more rapid motor progression over 36 months (P < 0.05), and higher “proinflammatory” component scores were associated with lower MMSE at all times (P < 0.05). Multiple linear regression analysis with adjustment for covariates confirmed “anti‐inflammatory” component score was the strongest predictor of slower motor progression (β = −0.22, P = 0.002), whereas proinflammatory cytokines were associated with lower baseline MMSE (β = −0.175, P = 0.007).ConclusionsSerum immune marker profile is predictive of disease progression in PD and hence a potential prognostic biomarker. However, interventional trials are needed to clarify whether peripheral immune changes causally contribute to the progression of PD. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Background Several reports have identified different patterns of Parkinson's disease progression in individuals carrying missense variants in GBA or LRRK2 genes. The overall contribution of genetic factors to the severity and progression of Parkinson's disease, however, has not been well studied. Objectives To test the association between genetic variants and the clinical features of Parkinson's disease on a genomewide scale. Methods We accumulated individual data from 12 longitudinal cohorts in a total of 4093 patients with 22,307 observations for a median of 3.81 years. Genomewide associations were evaluated for 25 cross‐sectional and longitudinal phenotypes. Specific variants of interest, including 90 recently identified disease‐risk variants, were also investigated post hoc for candidate associations with these phenotypes. Results Two variants were genomewide significant. Rs382940(T>A), within the intron of SLC44A1, was associated with reaching Hoehn and Yahr stage 3 or higher faster (hazard ratio 2.04 [1.58–2.62]; P value = 3.46E‐8). Rs61863020(G>A), an intergenic variant and expression quantitative trait loci for α‐2A adrenergic receptor, was associated with a lower prevalence of insomnia at baseline (odds ratio 0.63 [0.52–0.75]; P value = 4.74E‐8). In the targeted analysis, we found 9 associations between known Parkinson's risk variants and more severe motor/cognitive symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and an APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in patients. Conclusions We identified novel genetic factors associated with heterogeneity of Parkinson's disease. The results can be used for validation or hypothesis tests regarding Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society
ObjectiveTo determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression.MethodsWe evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed.ResultsWe confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69–6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04–20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16–1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19–2.31] for the C allele of rs114138760). Age at onset was associated with TMEM175 variant p.M393T (−0.72 [−1.21 to −0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27–1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21–1.03]).ConclusionsThis study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.
BackgroundA wealth of evidence implicates both central and peripheral immune changes as contributing to the pathogenesis of Parkinson’s disease (PD). It is critical to better understand this aspect of PD given that it is a tractable target for disease-modifying therapy. Age-related changes are known to occur in the immune system (immunosenescence) and might be of particular relevance in PD given that its prevalence rises with increasing age. We therefore sought to investigate this with respect to T cell replicative senescence, a key immune component of human ageing.MethodsPeripheral blood mononuclear cells were extracted from blood samples from 41 patients with mild PD (Hoehn and Yahr stages 1–2, mean (SD) disease duration 4.3 (1.2) years) and 41 age- and gender-matched controls. Immunophenotyping was performed with flow cytometry using markers of T lymphocyte activation and senescence (CD3, CD4, CD8, HLA-DR, CD38, CD28, CCR7, CD45RA, CD57, CD31). Cytomegalovirus (CMV) serology was measured given its proposed relevance in driving T cell senescence.ResultsMarkers of replicative senescence in the CD8+ population were strikingly reduced in PD cases versus controls (reduced CD57 expression (p = 0.005), reduced percentage of ‘late differentiated’ CD57loCD28hi cells (p = 0.007) and ‘TEMRA’ cells (p = 0.042)), whilst expression of activation markers (CD28) was increased (p = 0.005). This was not driven by differences in CMV seropositivity. No significant changes were observed in the CD4 population.ConclusionsThis study demonstrates for the first time that the peripheral immune profile in PD is distinctly atypical for an older population, with a lack of the CD8+ T cell replicative senescence which characterises normal ageing. This suggests that ‘abnormal’ immune ageing may contribute to the development of PD, and markers of T cell senescence warrant further investigation as potential biomarkers in this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.