Objectives/aims
The visceral myopathies (VM) are a group of disorders characterised by poorly contractile or acontractile smooth muscle. They manifest in both the GI and GU tracts, ranging from megacystis to Prune Belly syndrome. We aimed to apply a bespoke virtual genetic panel and describe novel variants associated with this condition using whole genome sequencing data within the Genomics England 100,000 Genomes Project.
Methods
We screened the Genomics England 100,000 Genomes Project rare diseases database for patients with VM-related phenotypes. These patients were screened for sequence variants and copy number variants (CNV) in ACTG2, ACTA2, MYH11, MYLK, LMOD1, CHRM3, MYL9, FLNA and KNCMA1 by analysing whole genome sequencing data. The identified variants were analysed using variant effect predictor online tool, and any possible segregation in other family members and novel missense mutations was modelled using in silico tools. The VM cohort was also used to perform a genome-wide variant burden test in order to identify confirm gene associations in this cohort.
Results
We identified 76 patients with phenotypes consistent with a diagnosis of VM. The range of presentations included megacystis/microcolon hypoperistalsis syndrome, Prune Belly syndrome and chronic intestinal pseudo-obstruction. Of the patients in whom we identified heterozygous ACTG2 variants, 7 had likely pathogenic variants including 1 novel likely pathogenic allele. There were 4 patients in whom we identified a heterozygous MYH11 variant of uncertain significance which leads to a frameshift and a predicted protein elongation. We identified one family in whom we found a heterozygous variant of uncertain significance in KCNMA1 which in silico models predicted to be disease causing and may explain the VM phenotype seen. We did not find any CNV changes in known genes leading to VM-related disease phenotypes. In this phenotype selected cohort, ACTG2 is the largest monogenic cause of VM-related disease accounting for 9% of the cohort, supported by a variant burden test approach, which identified ACTG2 variants as the largest contributor to VM-related phenotypes.
Conclusions
VM are a group of disorders that are not easily classified and may be given different diagnostic labels depending on their phenotype. Molecular genetic analysis of these patients is valuable as it allows precise diagnosis and aids understanding of the underlying disease manifestations. We identified ACTG2 as the most frequent genetic cause of VM. We recommend a nomenclature change to ‘autosomal dominant ACTG2 visceral myopathy’ for patients with pathogenic variants in ACTG2 and associated VM phenotypes.
LncRNAs are involved in regulatory processes in the human genome, including gene expression. The rs35705950 SNP, previously associated with IPF, overlaps with the recently annotated lncRNA AC061979.1, a 1712 nucleotide transcript located within the MUC5B promoter at chromosome 11p15.5. To document the expression pattern of the transcript, we processed 3.9 TBases of publicly available RNA-SEQ data across 27 independent studies involving lung airway epithelial cells. Epithelial lung cells showed expression of this putative pancRNA. The findings were independently validated in cell lines and primary cells. The rs35705950 is found within a conserved region (from fish to primates) within the expressed sequence indicating functional importance. These results implicate the rs35705950-containing AC061979.1 pancRNA as a novel component of the MUC5B expression control minicircuitry.
LncRNAs are involved in regulatory processes in the human genome, including gene expression. The rs35705950 SNP, previously associated with IPF, overlaps the recently annotated lncRNA AC061979.1, a 1,712 nucleotide transcript located within the MUC5B promoter at chromosome 11p15.5. To document the expression pattern of the transcript, we processed 3.9 TBases of publicly available RNA-SEQ data across 27 independent studies involving lung airway epithelial cells. Epithelial lung cells showed expression of this putative pancRNA. The findings were independently validated in cell lines and primary cells. The rs35705950 is found within a conserved region (from fish to primates) within the expressed sequence indicating functional importance. These results implicate the rs35705950-containing AC061979.1 pancRNA as a novel component of the MUC5B expression control minicircuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.