In the course of our screening program for anti-Mycobacterium bovis bacillus Calmette-Guérin (BCG) and anti-Mycobacterium tuberculosis H37Rv (MTB H37Rv) agents from our marine natural product library, a newly isolated actinomycete strain, designated as MS449, was picked out for further investigation. The strain MS449, isolated from a sediment sample collected from South China Sea, produced actinomycin X(2) and actinomycin D in substantial quantities, which showed strong inhibition of BCG and MTB H37Rv. The structures of actinomycins were elucidated by nuclear magnetic resonance and mass spectrometric analysis. The strain MS449 was taxonomically characterized on the basis of morphological and phenotypic characteristics, genotypic data, and phylogenetic analysis. The 16S rRNA gene sequence of the strain was determined and a database search indicated that the strain was closely associated with the type strain of Streptomyces avermitilis (99.7 % 16S rRNA gene similarity). S. avermitilis has not been previously reported to produce actinomycins. The marine-derived strain of Streptomyces sp. MS449 produced notably higher quantities of actinomycin X(2) (1.92 mg/ml) and actinomycin D (1.77 mg/ml) than previously reported actinomycins producing strains. Thus, MS449 was considered of great potential as a new industrial producing strain of actinomycin X(2) and actinomycin D.
Sansanmycins, produced by Streptomyces sp. strain SS, are uridyl peptide antibiotics with activities against Pseudomonas aeruginosa and multidrug-resistant Mycobacterium tuberculosis. In this work, the biosynthetic gene cluster of sansanmycins, comprised of 25 open reading frames (ORFs) showing considerable amino acid sequence identity to those of the pacidamycin and napsamycin gene cluster, was identified. SsaA, the archetype of a novel class of transcriptional regulators, was characterized in the sansanmycin gene cluster, with an N-terminal fork head-associated (FHA) domain and a C-terminal LuxR-type helix-turnhelix (HTH) motif. The disruption of ssaA abolished sansanmycin production, as well as the expression of the structural genes for sansanmycin biosynthesis, indicating that SsaA is a pivotal activator for sansanmycin biosynthesis. SsaA was proved to directly bind several putative promoter regions of biosynthetic genes, and comparison of sequences of the binding sites allowed the identification of a consensus SsaA binding sequence, GTMCTGACAN 2 TGTCAGKAC. The DNA binding activity of SsaA was inhibited by sansanmycins A and H in a concentration-dependent manner. Furthermore, sansanmycins A and H were found to directly interact with SsaA. These results indicated that SsaA strictly controls the production of sansanmycins at the transcriptional level in a feedback regulatory mechanism by sensing the accumulation of the end products. As the first characterized regulator of uridyl peptide antibiotic biosynthesis, the understanding of this autoregulatory process involved in sansanmycin biosynthesis will likely provide an effective strategy for rational improvements in the yields of these uridyl peptide antibiotics.
Sansanmycins, members of the uridyl peptide antibiotics, are assembled by nonribosomal peptide synthetases (NRPSs), the substrate promiscuity of which results in the diversity of products. Further exploration of the NRPSs' substrate promiscuity by reinvestigating sansanmycin producer strain led to the isolation and structural elucidation of eight new uridyl peptides, sansanmycins H-O (1-8). Among them, sansanmycin L, containing a 6-OH-bicyclic residue and Phe3 first found at the position AA3, exhibited activity against M. tuberculosis H37Rv with an MIC value of 2 μg/mL, 8-fold more potent than that of the major compound, sansanmycin A (MIC = 16 μg/mL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.