Smooth Transition Exponential Smoothing (STES) is a popular exponential smoothing method for volatility forecasting; whereby the success of the STES model lies in the choice of the transition variable. In this paper, three realized variance (RV), daily, weekly and monthly RV were used as the transition variables in STES methods to evaluate the performance of intraday data. While daily squared return is a noisy series, squared residual and daily RV were employed as the proxy for actual volatilities in this study. With five series of exchange rates, a comparative analysis was conducted for Ad Hoc methods, Generalised Autoregressive Conditional Heteroscedastic (GARCH) models, and STES methods using various RV combinations. The empirical results showed that when daily RV was used as proxy for actual volatility, the traditional STES models and STES models with RV as the transition variables outperformed Ad Hoc methods and GARCH models under the RMSE evaluation criteria. Similar promising results were also observed for traditional STES models and STES models with RV as the transition variables under MAE evaluation. The MCS results generally reaffirmed the results from both the MAE and RMSE evaluation criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.