We describe a structure learning system for unrestricted coreference resolution that explores two key modeling techniques: latent coreference trees and automatic entropy-guided feature induction. The latent tree modeling makes the learning problem computationally feasible because it incorporates a meaningful hidden structure. Additionally, using an automatic feature induction method, we can efficiently build enhanced nonlinear models using linear model learning algorithms. We present empirical results that highlight the contribution of each modeling technique used in the proposed system. Empirical evaluation is performed on the multilingual unrestricted coreference CoNLL-2012 Shared Task data sets, which comprise three languages: Arabic, Chinese, and English. We apply the same system to all languages, except for minor adaptations to some language-dependent features such as nested mentions and specific static pronoun lists. A previous version of this system was submitted to the CoNLL-2012 Shared Task closed track, achieving an official score of 58.69, the best among the competitors. The unique enhancement added to the current system version is the inclusion of candidate arcs linking nested mentions for the Chinese language. By including such arcs, the score increases by almost 4.5 points for that language. The current system shows a score of 60.15, which corresponds to a 3.5% error reduction, and is the best performing system for each of the three languages. *
Abstract. During the last 5 years, research on Human Activity Recognition (HAR) has reported on systems showing good overall recognition performance. As a consequence, HAR has been considered as a potential technology for ehealth systems. Here, we propose a machine learning based HAR classifier. We also provide a full experimental description that contains the HAR wearable devices setup and a public domain dataset comprising 165,633 samples. We consider 5 activity classes, gathered from 4 subjects wearing accelerometers mounted on their waist, left thigh, right arm, and right ankle. As basic input features to our classifier we use 12 attributes derived from a time window of 150ms. Finally, the classifier uses a committee AdaBoost that combines ten Decision Trees. The observed classifier accuracy is 99.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.