Background
Long noncoding RNAs (lncRNAs) have dense linkages with various biological processes. Identifying interacting lncRNA-protein pairs contributes to understand the functions and mechanisms of lncRNAs. Wet experiments are costly and time-consuming. Most computational methods failed to observe the imbalanced characterize of lncRNA-protein interaction (LPI) data. More importantly, they were measured based on a unique dataset, which produced the prediction bias.
Results
In this study, we develop an Ensemble framework (LPI-EnEDT) with Extra tree and Decision Tree classifiers to implement imbalanced LPI data classification. First, five LPI datasets are arranged. Second, lncRNAs and proteins are separately characterized based on Pyfeat and BioTriangle and concatenated as a vector to represent each lncRNA-protein pair. Finally, an ensemble framework with Extra tree and decision tree classifiers is developed to classify unlabeled lncRNA-protein pairs. The comparative experiments demonstrate that LPI-EnEDT outperforms four classical LPI prediction methods (LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM) under cross validations on lncRNAs, proteins, and LPIs. The average AUC values on the five datasets are 0.8480, 0,7078, and 0.9066 under the three cross validations, respectively. The average AUPRs are 0.8175, 0.7265, and 0.8882, respectively. Case analyses suggest that there are underlying associations between HOTTIP and Q9Y6M1, NRON and Q15717.
Conclusions
Fusing diverse biological features of lncRNAs and proteins and exploiting an ensemble learning model with Extra tree and decision tree classifiers, this work focus on imbalanced LPI data classification as well as interaction information inference for a new lncRNA (or protein).
Background: Long noncoding RNAs (lncRNAs) have dense linkages with various biological processes. Identifying interacting lncRNA-protein pairs contributes to understand the functions and mechanisms of lncRNAs. Wet experiments are costly and time-consuming. Most computational methods failed to observe the imbalanced characterize of lncRNA-protein interaction (LPI) data. More importantly, they were measured based on a unique dataset, which produced the prediction bias. Results: In this study, we develop an Ensemble framework (LPI-EnEDT) with Extra tree and Decision Tree classifiers to implement imbalanced LPI data classification. First, five LPI datasets are arranged. Second, lncRNAs and proteins are separately characterized based on Pyfeat and BioTriangle and concatenated as a vector to represent each lncRNA-protein pairs. Finally, an ensemble framework with Extra tree and decision tree classifiers is developed to classify unlabeled lncRNA-protein pairs. The comparative experiments demonstrate that LPI-EnEDT outperforms four classical LPI prediction methods (LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM) under cross validations on lncRNAs, proteins, and LPIs. The average AUC values on the five datasets are 0.8480, 0,7078, and 0.9066 under the three cross validations, respectively. The average AUPRs are 0.8175, 0.7265, and 0.8882, respectively. Case analyses suggest that there are underlying associations between HOTTIP and Q9Y6M1, NRON and Q15717. Conclusions: Fusing diverse biological features of lncRNAs and proteins and exploiting an ensemble learning model with Extra tree and decision tree classifiers, this work focus on imbalanced LPI data classification as well as interaction information inference for a new lncRNA (or protein).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.