Recurrent pregnancy loss (RPL) is a common reproductive problem affecting around 5% of couples worldwide. At present, about half of RPL cases remained unexplained. Previous studies have suggested an important role for genetic determinants in the etiology of RPL. Here, we performed whole-exome sequencing (WES) analysis on 100 unrelated Han Chinese women with a history of two or more spontaneous abortions. We identified 6736 rare deleterious nonsynonymous variants across all patients. To focus on possible candidate genes, we generated a list of 95 highly relevant genes that were functionally associated with miscarriage according to human and mouse model studies, and found 35 heterozygous variants of 28 RPL-associated genes in 32 patients. Four genes (FOXA2, FGA, F13A1, and KHDC3L) were identified as being strong candidates. The FOXA2 nonsense variant was for the first time reported here in women with RPL. FOXA2 knockdown in HEK-293T cells significantly diminished the mRNA and protein expression levels of LIF, a pivotal factor for maternal receptivity and blastocyst implantation. The other genes, with 29 variants, were involved in angiogenesis, the immune response and inflammation, cell growth and proliferation, which are functionally important processes for implantation and pregnancy. Our study identified several potential causal genetic variants in women with RPL by WES, highlighting the important role of genes controlling coagulation, confirming the pathogenic role of KHDC3L and identifying FOXA2 as a newly identified causal gene in women with RPL.
Background: Cytoplasmic male sterility (CMS) is a complex phenomenon of plant sterility that can produce non-functional pollen. It is caused by mutation, rearrangement or recombination in the mitochondrial genome. So far, the systematic structural characteristics of the changes in the mitochondrial genome from the maintainer lines to the CMS lines have not been reported in tobacco. Results: The mitochondrial genomes of the flower buds from both CMS lines and maintainer lines of two Nicotiana tabacum cultivars (YY85, sYY85, ZY90, and sZY90) were sequenced using the PacBio and Illumina Hiseq technology, and several findings were produced by comparative analysis based on the de novo sequencing. (1) The genomes of the CMS lines were larger, and the different areas were mostly non-coding regions. (2) A large number of rearrangement regions were detected in the CMS lines, with many translocation regions. (3) Thirteen gene clusters were shared by the four mitochondrial genomes, among which two of the gene clusters, nad2-sdh3 and nad6-rps4, were far from each other in the CMS lines. (4) Thirty-three protein-coding genes were conserved in four mitochondrial genomes. However, nad3 was detected one additional copy in the maintainer lines, and sequence differences were revealed in the four candidate genes (atp6, cox2, nad2, and sdh3). Importantly, the evolutionary tree based on the four genes could be used to distinguish the CMS lines and the maintainer lines well for the sequenced mitochondrial genomes of the tobacco. (5) Sixteen CMSspecific open reading frames (ORFs) were found, three of which (orf91, orf115b, and orf100) were previously reported. (6) The differences in intensity of the protein-protein (PPI) interaction in ATP6 were further verified using the yeast two-hybrid analysis. Conclusion: Although the majority of the sequences, genes and gene clusters were shared by the mitochondrial genomes of the maintainer and the CMS lines in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.