The present study developed a sensitive sensing method for the determination of alkaline phosphatase (ALP) activity based on gold nanoclusters (Au NCs)-catalyzed luminol-H2O2 chemiluminescent (CL) reaction. The CL signal of luminol-H2O2-Au NCs can be quenched by ascorbic acid which was the product of magnesium ascorbyl phosphate (MAP) hydrolysis reaction catalyzed by ALP. The proposed sensing platform showed convenient, sensitive and selective detection of ALP in the range of 0.0027-1.3890 U L-1 , with the detection limit of 0.0026 U L-1. The broad detection linear range and ultra-high sensitivity were inherited from the efficient free radical scavenging capability of ascorbic acid on the luminol-H2O2-Au NCs CL reaction. The CL sensing platform was applied to the detection of ALP activity in serum samples. We believe that this sensing platform is a universal CL strategy for ALP detection because ascorbic acid is an efficient CL quencher for many CL reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.