This paper presents research of the impact toughness and hardness distribution in specific zones of a ‘single V’butt multiple-pass welded joints of the high-strength low-alloyed steels. Obtained values of the impact toughness are analyzed in correlation with a microstructure in specific zones of the welded joint, together with the micro hardness distribution found in the related zones. Based on the carried out analysis and results obtained in experiments, the applied technology of welding was evaluated. The original conclusions on influence of the selected welding procedure manual metal arc (MMA) for the root passes and metal active gas (MAG) for the filling and covering passes) on impact toughness of the high-strength low-alloyed steels are drawn. The paper also presents discussion on the valid standards and recommendations related to welding of those steels, from the aspect of applications in design of steel welded constructions.
Numerous phenomena that occur during the process of machine parts’ regeneration have a significant impact on the loss of their working ability. Therefore, the properties of the working surfaces of the teeth flanks of repaired gears were analyzed in this research. The hereditary properties of the gear teeth are expressed by the interdependence of their geometric and physical-mechanical-metallurgical parameters created during the technological operations of regeneration of worn teeth by welding/hard-facing. The hard-facing was executed with three filler metal types, namely: combination Inox 18/8/6 + EDur 600, Castolin 2 and UTP 670. The tested properties included geometrical accuracy, microstructure and microhardness. Evaluation of the executed regeneration procedures was done by comparing the mentioned parameters of the regenerated gears and the new ones. The tested gears were not withdrawn from production due to damage, but they were newly manufactured and intentionally damaged gears, made of the same materials, subjected to the same manufacturing process. In this way, all influences except for the considered filler metal type were eliminated. Based on results of the conducted experiments, it was possible to establish the influence of the filler metal type on the surface characteristics of the regenerated gears’ teeth flanks.
Purpose The purpose of this paper is comparison of experimental values of the drawing forces to numerical values in different contact conditions, taking into account the appearance of galling which occurs due to of difficult drawing process conditions. Design/methodology/approach The following two research approaches are used in this paper – the physical modeling, realized by the laboratory experiment, and the numerical simulation of the ironing drawing process. By analyzing the obtained results, the technique of physical modeling, with help of the laboratory equipment and numerical simulation by application of the finite element method, can be successfully used in studying the thin sheet ironing – strip drawing process. Findings It is significant to compare values of the deformation forces obtained by physical experiment to values obtained by the numerical simulation. In that way, it is possible to compare applied contact conditions (four lubricants in that case) and estimate matching of experimentally and numerically obtained results of the deformation forces. Presented results point out very good technological characteristics of ecologically friendly lubricant (single-bath) and grease based on MoS2. Significant decrease of the deformation force was achieved by its application, as well as maintaining of the lubricant’s layer during the forming process and almost complete elimination of galling on the contact. Practical implications Numerical analysis of stresses in the working piece wall, during the thin sheet strip drawing, requires precise values of the friction coefficient. It is an important indicator because one can define the contact conditions as the input data for the numerical simulation, based on its values for each type of lubricants and each value of the compressive lateral force. Originality/value The environmentally friendly lubricant tested exhibits a more favorable distribution of the drawing force during the process, mainly in experimental case. Grease based on MoS2 has good lubricating properties but that lubricant is conventional and environmentally unacceptable. Ecologically friendly lubricant can be successfully used in real ironing strip drawing process especially for high values of holding force achieving an increased tool life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.