Due to their exceptional performance in coping with large variations in output voltage and current, parallel resonant converters (PRC) are commonly used in high-voltage applications. The incorporation of step-up transformer parasitic components as part of a power topology, on the right duty and a suitable switching frequency, determines the high efficiency and wide variety of applications with PRC. Switching losses are reduced in the same topology by tracking and running on the optimum mode for each power and voltage by a set frequency and duty. The PRC’s static model behaviors, under optimum operating circumstances, are illustrated. The equivalent polynomial model is used to quickly compute the switching frequency and duty cycle required to achieve the converter’s desired output voltage and power. The polynomial model is simple and easy to implement in any form of a digital signal controller (DSC). Normalized parameters are used to widen the operational range and generalize the model. This also offers the essential protection against current and voltage spikes. The work in progress depicts the specific procedures involved in developing a polynomial model. The normalized equations provide a graphical description of the static model, from which the graphical representation of the polynomial are derived. Hence, polynomial equations are obtained. This paper describes the PRC static model, how to convert it to a polynomial model, how to validate it with MATLAB-Simulink, how to program F28335 using Simulink, and how to use it in practice.
The actual research in terms of energy focuses drastically on the use of green energy resources. Hydropower systems have been the most known green sources for years. However, the hydropower systems, which are seasonal and most exploited, do not cover the speed of increasing daily demand. The injection of solar power could be a supporting alternative, but it is only in daylight, weather dependent and intermittent. Therefore, a storage system is required. The batteries are the quick recourse. Not only the energy sector, but also the transport systems are not left behind; they are striving to turn green. Therefore, they are turning to electric vehicles (EVs) and electric moto-bicycles (EMBs). On the other hand, this option tends to be a sharply increasing demand that can be a burden to the grid, i.e., the increase in the EVs and EMBs implies increases in power demand, grid components and pressure on the grid. Fortunately, the EVs use batteries to store energy for their use. Therefore, the EVs are the power storage system, they become part of the power management system and they can save the power surplus. With the injection of PV solar power, there is no need for an extra storage system, as the EVs are charged from the grid and store the solar energy that can be used later after sunset. The bi-directional off-board charger is a solution as it allows the grid to charge the vehicle (G2V) and the vehicle to send power back to grid (V2G). The inclusion of EVs in power management introduces the concept of vehicle-to-vehicle (V2V) when one EV can charge another, and the vehicle-to-load (V2X) where the EV can supply power to EMBs or any load. The V2G, G2V, V2X, the inclusion on solar energy to the grid and the behavior of the grid in that scenario will be illustrated in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.