Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure.
The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.
Background Peripheral artery disease (PAD) is a vascular disease caused by atherosclerosis resulting in decreased blood flow to the lower extremities. The ankle brachial index (ABI) is a standard PAD diagnostic test, but only identifies reduced blood flow based on blood pressure differences. The early signs of PAD manifest themselves not only clinically, but also at an elemental and biochemical level. However, the biochemical and elemental alterations to PAD muscle are not well understood. The objective of this study was to compare fundamental changes in intracellular elemental compositions between control, claudicating, and critical limb ischemia muscle tissue. Materials and methods Gastrocnemius biopsies from three subjects including one control (ABI≥0.9), one claudicating (0.4≤ABI<0.9) and one critical limb ischemia patient (ABI<0.4) were evaluated using a scanning electron microscope and energy dispersive X-ray spectroscopy to quantify differences in elemental compositions. Spectra were collected for 5 myofibers per specimen. An analysis of variance was performed to identify significant differences in muscle elemental compositions. Results This study revealed that intracellular magnesium and calcium were lower in PAD compared to control myofibers while sulfur was higher. Magnesium and calcium are antagonistic, meaning, if magnesium concentrations go down calcium concentrations should go up. However, our findings do not support this antagonism in PAD. Our analysis found decreases in sodium and potassium, in PAD myofibers. Conclusions These findings may provide insight into the pathologic mechanisms that may operate in ischemic muscle and aid in the development of specialized preventive and rehabilitative treatment plans for PAD patients.
Modern wearable devices show promising results in terms of detecting vital bodily signs from the wrist. However, there remains a considerable need for a device that can conform to the human body’s variable geometry to accurately detect those vital signs and to understand health better. Flexible radio frequency (RF) resonators are well poised to address this need by providing conformable bio-interfaces suitable for different anatomical locations. In this work, we develop a compact wearable RF biosensor that detects multisite hemodynamic events due to pulsatile blood flow through noninvasive tissue–electromagnetic (EM) field interaction. The sensor consists of a skin patch spiral resonator and a wearable transceiver. During resonance, the resonator establishes a strong capacitive coupling with layered dielectric tissues due to impedance matching. Therefore, any variation in the dielectric properties within the near-field of the coupled system will result in field perturbation. This perturbation also results in RF carrier modulation, transduced via a demodulator in the transceiver unit. The main elements of the transceiver consist of a direct digital synthesizer for RF carrier generation and a demodulator unit comprised of a resistive bridge coupled with an envelope detector, a filter, and an amplifier. In this work, we build and study the sensor at the radial artery, thorax, carotid artery, and supraorbital locations of a healthy human subject, which hold clinical significance in evaluating cardiovascular health. The carrier frequency is tuned at the resonance of the spiral resonator, which is 34.5 ± 1.5 MHz. The resulting transient waveforms from the demodulator indicate the presence of hemodynamic events, i.e., systolic upstroke, systolic peak, dicrotic notch, and diastolic downstroke. The preliminary results also confirm the sensor’s ability to detect multisite blood flow events noninvasively on a single wearable platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.