Artificial light at night (ALAN) functions as a novel environmental stimulus that has the potential to disrupt interactions among species. Despite recent efforts to explain nocturnal pollinators’ responses to this stimulus, the likelihood and associated mechanisms of attraction towards artificial light and potential consequences on fitness for diurnal pollinators is still largely unclear. Here, we took advantage of the obligate mutualism between yucca moths (Tegeticula maculata maculata) and yucca plants (Hesperoyucca whipplei) to understand how direct light exposure and skyglow can influence a pairwise plant-pollinator interaction. To surmise whether adult moths exhibit positive phototaxis, we deployed a set of field-placed light towers during the peak of yucca flowering and compared the number of moths caught in traps between dark-controlled and light-treated trials. Adult moth abundance was much higher when light was present, which suggests that ALAN may alter this diurnal moth’s activity patterns to expand their temporal niche into the night. To evaluate ALAN effects on yucca fruit set and moth larva recruitment, we measured skyglow exposure above yucca plants and direct light intensity from a second set of light towers. Both larva and fruit recruitment increased with skyglow, and fruit set also increased with direct lighting, but the relationship was weaker. Contrarily, larva recruitment did not change when exposed to a gradient of direct light, which may instead reflect effects of ALAN on moth physiology, such as disrupted female oviposition, or misdirecting behaviors essential to oviposition activity. Our results suggest that ALAN can positively influence the fitness of both plants and moths in this tightly co-evolved mutualism, but the benefits to each species may depend on whether night lighting is direct or indirect. Whether such effects and mechanisms could relate to susceptibility to the presence of ALAN on this or other plant-pollinator relationships will remain an important focus of future research.
Anthropogenic noise and artificial night lighting have been shown to have substantial effects on animal behavior, physiology, and species interactions. Despite the large body of previous work, very few studies have studied the combined effects of light and noise pollution, especially experimentally in the field. Rodents are a highly diverse group that are predominantly nocturnal and occupy a wide range of habitats worldwide, frequently in close association with human development, placing them at a heightened risk from sensory disturbances. To test the singular and combined effects of various levels of anthropogenic light and noise exposure on pinyon mouse (Peromyscus truei) activity and body condition, we used standard trapping methods across a gradient of light and noise and the two combined and accounted for variation of moonlight, vegetation structure, and weather. We hypothesized that increased levels of artificial light would decrease trap success and lead to lower body condition due to an increase in perceived predation risk and that increased noise levels would increase trap success and body condition due to a reduction in predation risk and/or release from competition. Pinyon mouse trap success declined as light intensity increased, and the effect was comparable to that of moonlight, which is well known to influence rodent activity and perception of predation risk. Although noise pollution did not alter trap success of pinyon mice, individuals captured in noisier areas at the beginning of the season had lower body condition than those from quieter areas. Body condition was uninfluenced by noise and light later in the season. We also found no evidence of any additive or synergistic effects of the two stimuli. Our results provide evidence that alterations to the sensory environment from anthropogenic activity can affect wild rodents in several ways. As anthropogenic development increases to meet the demands of growing human populations, more ecosystems will be exposed to increased levels of sensory disturbance, making the understanding of how these changes affect wildlife critical to ongoing conservation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.