Assessments of species distributions are crucial for informing conservation and management action. In this study, we used ensemble modelling to explain the distribution of Near Threatened Indo-Pacific (IP) bottlenose dolphins (Tursiops aduncus) in coastal waters at the North West Cape (NWC), Western Australia (WA), an area encompassing a marine protected area (MPA) and adjacent unprotected coastal waters. Analyses used dolphin sighting data collected during boat-based surveys conducted from 2013 to 2015 and 2018 to 2019. Overall, the distribution of IP bottlenose dolphins was best explained by distance to coast (up to 2,000 m) and distance to boat ramp (up to 7,000 m). Areas of high probability of occurrence for dolphins extended from the tip and down the eastern side of the NWC and overlapped with designated sanctuary zones as well as waters beyond the boundaries of the Ningaloo Marine Park (NMP). Distribution and habitat preferences varied slightly with season. In autumn, dolphin distribution was best explained by distance to coast and water depth with a higher likelihood of observing dolphins 1,000–2,000 m from the coast and in water depths of 7–10 m deep. During winter months, distance to coast (1,000–2,000 m) and sea surface temperature (SST) (21.5–23.5°C) were the most important explanatory variables, with presence in coastal lagoons to the west of the NWC more likely than other seasons. During spring, areas of moderate to high probability of dolphin occurrence were mainly located outside the NMP, with marine park zone (outside the NMP and Sanctuary zones within the NMP, the two zones with the highest probability of IP bottlenose dolphin occurrence) and water depth (waters 7–13 m deep) best explaining dolphin distribution. This study highlights the importance of inshore areas of the NWC for IP bottlenose dolphins and the potential vulnerability of this species to increasing and cumulative anthropogenic stressors associated with these areas. Results of this study should be considered in future zoning reviews and adaptive management efforts of the NMP allowing for effective management of this Near Threatened species.
Trait-based approaches have become topical in ecological research for understanding the relationship between species (biodiversity) and ecosystem functioning, ecosystem processes, ecosystem services, or responses to anthropogenic disturbances (Bolam et al., 2016;
Coastal regions provide vital ecosystem services for the human well-being. Rapid economic growth and increasing population in coastal regions is exerting more pressure on coastal environments. Here we develop four plausible scenarios to the year 2050 that address above issues in the northern Adelaide coastline, South Australia. Four scenarios were named after their characteristics, Lacuna, Gold Coast SA, Down to Earth, and Green & Gold. Lacuna and Gold Coast SA. Economy declined significantly in Lacuna, whereas, there is highest annual GDP growth (3.5%) in Gold Coast SA, which was closely followed by Green & Gold scenario (3%), GDP under Down to Earth grows at moderate 1.5%. There is highest population growth in Gold Coast SA followed by Green & Gold, Down to Earth and Lacuna. Gold Coast SA scenario led to high inequality as estimated by the Gini co-efficient of 0.45 compared to the current value of 0.33. Ecosystem services declined rapidly under Green & Gold and Lacuna as compared to the other two scenarios. The combination of scenario planning and ecosystem services valuation provides the capacity to guide coastal planning by illustrating enhanced social, environmental and economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.