Summary The discovery of potent BRAF inhibitors has revolutionized therapy for BRAF-mutant melanoma, yet NRAS-mutant melanoma remains without effective therapy. Since direct pharmacological inhibition of RAS has thus far been unsuccessful, we explored system biology approaches to identify synergistic drug combination(s) that can mimic direct RAS inhibition. Here, leveraging an inducible mouse model of NRAS-mutant melanoma, we show that pharmacological MEK inhibition activates apoptosis but fails to trigger cell cycle arrest, in contrast to complete NRAS extinction in vivo by genetic means. Network modeling pinpointed CDK4 as a key driver of this differential phenotype. Accordingly, combined pharmacological inhibition of MEK and CDK4 in vivo led to significant synergy in therapeutic efficacy. Taken together, our data suggest a gradient model of oncogenic NRAS signaling to the canonical MAPK cascade, where the output is gated, resulting in de-coupling of discrete downstream biological phenotypes in the setting of incomplete inhibition. Such a gated signaling model provides a novel framework to identify non-obvious co-extinction target(s) for combined pharmacological inhibition in NRAS-mutant melanomas.
Polychlorinated biphenyls (PCBs) are associated with a broad spectrum of human health problems and cause cancer in rodents. In addition, these compounds cause chromosomal aberrations in humans and treated human cells. Although the underlying basis for the chromosomal damage induced by PCBs is not understood, it is believed that these compounds act through a series of phenolic and quinone-based metabolites. Recent studies indicate that several quinones that promote chromosomal damage also act as topoisomerase II poisons. Therefore, the effects of PCB quinone metabolites (including mono and dichlorinated compounds and p- and o-quinones) on the activity of human topoisomerase IIalpha were examined. Results indicate that these compounds are potent topoisomerase IIalpha poisons in vitro and act by adducting the enzyme. They also increase DNA cleavage by topoisomerase IIalpha in cultured human cells. In contrast, incubation of topoisomerase IIalpha with PCB metabolites in the absence of DNA leads to a rapid loss of enzyme activity. On the basis of (1) the differential ability of quinone-treated enzyme to bind circular and linear DNA molecules and (2) the generation of salt-stable noncovalent complexes between topoisomerase IIalpha and circular plasmids in the presence of PCB quinones, it appears that these compounds alter enzyme function (at least in part) by blocking the N-terminal gate of the protein. Finally, exposure to quinones generates a protein species with a molecular mass approximately twice that of a monomeric topoisomerase IIalpha protomer. This finding suggests that PCB quinones block the N-terminal gate by cross-linking the protomer subunits of topoisomerase IIalpha.
Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIalpha with quinones inhibits DNA religation and blocks the N-terminal gate of the protein by cross-linking its two protomer subunits. It is not known whether these two effects result from adduction of quinone to the same amino acid residue(s) in topoisomerase IIalpha or whether they are mediated by modification of separate residues. Therefore, this study identified amino acid residues in human topoisomerase IIalpha that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: Cys170, Cys392, Cys405, and Cys455. Mutations (Cys --> Ala) were individually generated at each position. Only mutations at Cys392 or Cys405 reduced sensitivity ( approximately 50% resistance) to benzoquinone. Top2alphaC392A and top2alphaC405A displayed faster rates ( approximately 2-fold) of DNA religation than wild-type topoisomerase IIalpha in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer cross-linking experiments, mutations at Cys392 and Cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIalpha. These findings indicate that adduction of Cys392 and Cys405 is important for the actions of quinones against the enzyme and increases levels of cleavage complexes primarily by inhibiting DNA religation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.