Background The breathing disorder obstructive sleep apnea syndrome (OSAS) only occurs while asleep. While polysomnography (PSG) represents the premiere standard for diagnosing OSAS, it is quite costly, complicated to use, and carries a significant delay between testing and diagnosis. Methods This work describes a novel architecture and algorithm designed to efficiently diagnose OSAS via the use of smart phones. In our algorithm, features are extracted from the data, specifically blood oxygen saturation as represented by SpO2. These features are used by a support vector machine (SVM) based strategy to create a classification model. The resultant SVM classification model can then be employed to diagnose OSAS. To allow remote diagnosis, we have combined a simple monitoring system with our algorithm. The system allows physiological data to be obtained from a smart phone, the data to be uploaded to the cloud for processing, and finally population of a diagnostic report sent back to the smart phone in real-time. Results Our initial evaluation of this algorithm utilizing actual patient data finds its sensitivity, accuracy, and specificity to be 87.6%, 90.2%, and 94.1%, respectively. Discussion Our architecture can monitor human physiological readings in real time and give early warning of abnormal physiological parameters. Moreover, after our evaluation, we find 5G technology offers higher bandwidth with lower delays ensuring more effective monitoring. In addition, we evaluate our algorithm utilizing real-world data; the proposed approach has high accuracy, sensitivity, and specific, demonstrating that our approach is very promising. Conclusions Experimental results on the apnea data in University College Dublin (UCD) Database have proven the efficiency and effectiveness of our methodology. This work is a pilot project and still under development. There is no clinical validation and no support. In addition, the Internet of Things (IoT) architecture enables real-time monitoring of human physiological parameters, combined with diagnostic algorithms to provide early warning of abnormal data.
Background Medical image data, like most patient information, have a strong requirement for privacy and confidentiality. This makes transmitting medical image data, within an open network, problematic, due to the aforementioned issues, along with the dangers of data/information leakage. Possible solutions in the past have included the utilization of information-hiding and image-encryption technologies; however, these methods can cause difficulties when attempting to recover the original images. Methods In this work, we developed an algorithm for protecting medical image key regions. Coefficient of variation is first employed to identify key regions, a.k.a. image lesion areas; then additional areas are processed as blocks and texture complexity is analyzed. Next, our novel reversible data-hiding algorithm embeds lesion area contents into a high-texture area, after which an Arnold transformation is utilized to protect the original lesion information. After this, we use image basic information ciphertext and decryption parameters to generate a quick response (QR) code used in place of original key regions. Results The approach presented here allows for the storage (and sending) of medical image data within open network environments, while ensuring only authorized personnel are able to recover sensitive patient information (both image and meta-data) without information loss. Discussion Peak signal to noise ratio and the Structural Similarity Index measures show that the algorithm presented in this work can encrypt and restore original images without information loss. Moreover, by adjusting the threshold and the Mean Squared Error, we can control the overall quality of the image: the higher the threshold, the better the quality and vice versa. This allows the encryptor to control the amount of degradation as, at appropriate amounts, degradation aids in the protection of the image. Conclusions As shown in the experimental results, the proposed method allows for (a) the safe transmission and storage of medical image data, (b) the full recovery (no information loss) of sensitive regions within the medical image following encryption, and (c) meta-data about the patient and image to be stored within and recovered from the public image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.