We discuss conditions on weight functions, necessary or sufficient, so that the Fourier transform is bounded from one weighted Lebesgue space to another. The sufficient condition and the primary necessary condition presented are similar, one being phrased is terms of arbitrary measurable sets and the other in terms of cubes. We believe that the symmetry amongst the two conditions helps frame how a single condition, necessary and sufficient, might appear.We discuss necessary conditions and a sufficient condition on nonnegative functions u and v such that the following weighted norm inequality holds for the Fourier transform: there exists a constant C such that
Abstract. We show a pointwise estimate for the Fourier transform on the line involving the number of times the function changes monotonicity. The contrapositive of the theorem may be used to find a lower bound to the number of local maxima of a function. We also show two applications of the theorem. The first is the two weight problem for the Fourier transform, and the second is estimating the number of roots of the derivative of a function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.