Expansion of GAA x TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-mediated repression mechanism. We describe the synthesis and characterization of a class of histone deacetylase (HDAC) inhibitors that reverse FXN silencing in primary lymphocytes from individuals with Friedreich's ataxia. We show that these molecules directly affect the histones associated with FXN, increasing acetylation at particular lysine residues on histones H3 and H4 (H3K14, H4K5 and H4K12). This class of HDAC inhibitors may yield therapeutics for Friedreich's ataxia.
Transcriptional dysregulation has emerged as a core pathologic feature of Huntington's disease (HD), one of several triplet-repeat disorders characterized by movement deficits and cognitive dysfunction. Although the mechanisms contributing to the gene expression deficits remain unknown, therapeutic strategies have aimed to improve transcriptional output via modulation of chromatin structure. Recent studies have demonstrated therapeutic effects of commercially available histone deacetylase (HDAC) inhibitors in several HD models; however, the therapeutic value of these compounds is limited by their toxic effects. Here, beneficial effects of a novel pimelic diphenylamide HDAC inhibitor, HDACi 4b, in an HD mouse model are reported. Chronic oral administration of HDACi 4b, beginning after the onset of motor deficits, significantly improved motor performance, overall appearance, and body weight of symptomatic R6/2 300Q transgenic mice. These effects were associated with significant attenuation of gross brain-size decline and striatal atrophy. Microarray studies revealed that HDACi 4b treatment ameliorated, in part, alterations in gene expression caused by the presence of mutant huntingtin protein in the striatum, cortex, and cerebellum of R6/2 300Q transgenic mice. For selected genes, HDACi 4b treatment reversed histone H3 hypoacetylation observed in the presence of mutant huntingtin, in association with correction of mRNA expression levels. These findings suggest that HDACi 4b, and possibly related HDAC inhibitors, may offer clinical benefit for HD patients and provide a novel set of potential biomarkers for clinical assessment.rologic disorder caused by a CAG repeat expansion within the coding region of the HD gene (Htt), resulting in a mutant protein (htt) with a lengthened polyglutamine tract (1). Mutant htt protein has been shown to disrupt transcription by multiple mechanisms, but it is unclear which are most important to pathology (2-4). By interacting with specific transcription factors, htt can alter the expression of clusters of genes controlled by those factors. For example, several genes driven by Sp1, which has been shown to interact with htt (5, 6), show decreased mRNA expression in human HD and in mouse models of HD (7). Alternatively, htt may have more global effects on transcription by disrupting core transcriptional machinery (8, 9) or by altering posttranslational modifications of histones, resulting in condensed chromatin structure (10-13). Understanding the basis for transcriptional dysregulation is important for choosing appropriate drug-discovery strategies.Manifestations of transcriptional dysregulation are evident from several gene-profiling studies, which have revealed alterations in the expression of large numbers of genes in the brains of different HD mouse models and in human subjects with HD (7, 14-16). Many of the expression changes in mouse models are observed in early stages of illness before the onset of symptoms, suggesting that gene expression alterations may be pathogenic.Because o...
BackgroundFriedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAA⋅TTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4.Methodology/Principal FindingsBy chromatin immunoprecipitation, we detected the same heterochromatin marks in homozygous mice carrying a (GAA)230 repeat in the first intron of the mouse frataxin gene (KIKI mice). These animals have decreased frataxin levels and, by microarray analysis, show significant gene expression changes in several tissues. We treated KIKI mice with a novel histone deacetylase inhibitor, compound 106, which substantially increases frataxin mRNA levels in cells from Friedreich ataxia individuals. Treatment increased histone H3 and H4 acetylation in chromatin near the GAA repeat and restored wild-type frataxin levels in the nervous system and heart, as determined by quantitative RT-PCR and semiquantitative western blot analysis. No toxicity was observed. Furthermore, most of the differentially expressed genes in KIKI mice reverted towards wild-type levels.Conclusions/SignificanceLack of acute toxicity, normalization of frataxin levels and of the transcription profile changes resulting from frataxin deficiency provide strong support to a possible efficacy of this or related compounds in reverting the pathological process in Friedreich ataxia, a so far incurable neurodegenerative disease.
Patients with the most common and aggressive form of high-grade glioma, glioblastoma multiforme, have poor prognosis and few treatment options. In 2 immunocompetent mouse brain tumor models (CT26-BALB/c and Tu-2449-B6C3F1), we showed that a nonlytic retroviral replicating vector (Toca 511) stably delivers an optimized cytosine deaminase prodrug activating gene to the tumor lesion and leads to long-term survival after treatment with 5-fluorocytosine (5-FC). Survival benefit is dose dependent for both vector and 5-FC, and as few as 4 cycles of 5-FC dosing after Toca 511 therapy provides significant survival advantage. In the virally permissive CT26-BALB/c model, spread of Toca 511 to other tissues, particularly lymphoid tissues, is detectable by polymerase chain reaction (PCR) over a wide range of levels. In the Tu-2449-B6C3F1 model, Toca 511 PCR signal in nontumor tissues is much lower, spread is not always observed, and when observed, is mainly detected in lymphoid tissues at low levels. The difference in vector genome spread correlates with a more effective antiviral restriction element, APOBEC3, present in the B6C3F1 mice. Despite these differences, neither strain showed signs of treatment-related toxicity. These data support the concept that, in immunocompetent animals, a replicating retroviral vector carrying a prodrug activating gene (Toca 511) can spread through a tumor mass, leading to selective elimination of the tumor after prodrug administration, without local or systemic pathology. This concept is under investigation in an ongoing phase I/II clinical trial of Toca 511 in combination with 5-FC in patients with recurrent high-grade glioma ( NCT01156584).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.