The genus Esoptrodinium Javornický consists of freshwater, athecate dinoflagellates with an incomplete cingulum. Strains isolated thus far feed on microalgae and most possess obvious pigmented chloroplasts, suggesting mixotrophy. However, some geographic isolates lack obvious pigmented chloroplasts. The purpose of this study was to comparatively examine this difference and the associated potential for mixotrophy among different isolates of Esoptrodinium. All isolates phagocytized prey cells through an unusual hatch-like peduncle located on the ventral episome, and were capable of ingesting various protist taxa. All Esoptrodinium isolates required both food and light to grow. However, only the tested strain with visible pigmented chloroplasts benefited from light in terms of increased biomass (phototrophy). Isolates lacking obvious chloroplasts received no biomass benefit from light, but nevertheless required light for sustained growth (i.e., photoobligate, but not phototrophic). Isolates with visible chloroplasts exhibited chlorophyll autofluorescence and formed a monophyletic psbA gene clade that suggested Esoptrodinium possesses inherited, peridinoid-type plastids. One isolate with cryptic, barely visible plastids lacked detectable chlorophyll and exhibited an apparent loss-of-function mutation in psbA, indicating the presence of nonphotosynthetic plastids. The other isolate that lacked visible chloroplasts lacked both detectable chlorophyll and an amplifiable psbA sequence. The results demonstrate mixotrophy quantitatively for the first time in a freshwater dinoflagellate, as well as apparent within-clade loss of phototrophy along with a correlated mutation sufficient to explain that phenotype. Phototrophy is a variable trait in Esoptrodinium; further study is required to determine if this represents an inter- or intraspecific (allelic) characteristic in this taxon.
The genera Esoptrodinium Javornický and Bernardinium Chodat comprise freshwater, athecate dinoflagellates with an incomplete cingulum but differing reports regarding cingulum orientation and the presence of chloroplasts and an eyespot. To examine this reported diversity, six isolates were collected from different freshwater ponds and brought into clonal culture. The isolates were examined using LM to determine major cytological differences, and rDNA sequences were compared to determine relatedness and overall phylogenetic position within the dinoflagellates. All isolates were athecate with a left-oriented cingulum that did not fully encircle the cell, corresponding to the current taxonomic concept of Esoptrodinium. However, consistent cytological differences were observed among clonal isolates. Most isolates exhibited unambiguous pale green chloroplasts and a distinct bright-red eyespot located at the base of the longitudinal flagellum. However, one isolate had cryptic chloroplasts that were difficult to observe using LM, and another had an eyespot that was so reduced as to be almost undetectable. Another isolate lacked visible chloroplasts but did possess the characteristic eyespot. Nuclear rDNA phylogenies strongly supported a monophyletic Esoptrodinium clade containing all isolates from this study together with a previous sequence from Portugal, within the Tovelliaceae. Esoptrodinium subclades were largely correlated with cytological differences, and the data suggested that independent chloroplast and eyespot reduction and/or loss may have occurred within this taxon. Overall, the isolates encompassed the majority of cytological diversity reported in previous observations of Bernardinium/Esoptrodinium in field samples. Systematic issues with the current taxonomic distinction between Bernardinium and Esoptrodinium are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.