SUMMARY Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling extracellular matrix molecules. Collectively, these findings uncover the heterogeneity of TAM origin and functions, and could provide therapeutic insight for PDAC treatment.
Background Pancreatic ductal adenocarcinoma utilizes the CCL2/CCR2 chemokine axis to facilitate recruitment of tumor associated macrophages to sculpt an immunosuppressive tumor microenvironment. This pathway has prognostic implications in pancreas cancer, and blockade of CCR2 restores anti-tumor immunity in pre-clinical models. This provided the rationale for a clinical study in pancreatic adenocarcinoma to determine the safety and recommended phase 2 oral dosage of the CCR2 inhibitor PF-04136309 in combination with chemotherapy (FOLFIRINOX). Methods In this single-center, open label, phase Ib clinical trial patients age ≥ 18 years with treatment naïve borderline resectable or locally advanced, biopsy-proven pancreatic ductal adenocarcinoma, Eastern Cooperative Oncology Group performance status <2, measurable disease by Response Evaluation Criteria in Solid Tumors Version 1.1, and normal end organ function were eligible for enrollment. FOLFIRINOX (oxaliplatin, 85 mg/m2; irinotecan, 180 mg/m2; leucovorin, 400 mg/m2, and bolus fluorouracil 400 mg/m2 followed by 2,400 mg/m2 46 hour continuous infusion) was administered every 2 weeks for a total of six treatment cycles. To determine the recommended phase 2 dose, PF-04136309 was orally administered at a starting dose of 500 mg twice daily in a standard 3+3 dose de-escalation design with an expansion phase planned at the recommended phase 2 dose. Both FOLFIRINOX and PF-04136309 were simultaneously initiated with a total treatment duration of 3 months. The primary endpoints were to determine the recommended phase 2 dose and toxicity of PF-04136309 in combination with FOLFIRINOX. All patients in the dose de-escalation and expansion phase received the recommended phase 2 dose of PF-04136309 were combined for assessment of treatment toxicity by an intention to treat analysis. For tissue specimen comparison in corollary studies, a group of patients receiving FOLFIRINOX alone were enrolled and evaluated for treatment related toxicity. This study has been completed and is registered at ClinicalTrials.gov; number NCT01413022. Results From April 19th, 2012 through November 12th, 2014 a total of 47 patients were enrolled. The dose de-escalation group (n=6) received PF-04136309 at 500 mg administered orally twice daily. No dose-limiting toxicities were observed and this was established as the recommended phase 2 dose. The expansion phase cohort (n=33) and patients in the dose de-escalation arm receiving PF-04136309 at the recommended phase 2 dose (n=6) were combined for assessment of treatment related toxicity. No therapy related deaths occurring during the study interval. Early termination as the result of treatment related toxicity occurred in 2 of the 39 patients (5%) in the FOLFIRINOX plus PF-04136309 arm. Grade ≥3 adverse events reported in ≥10% of the patients receiving PF-04136309 included neutropenia in 27 patients (69%), febrile neutropenia in 7 patients (18%), lymphopenia in 4 patients (10%), diarrhea in 6 patients (15%), and hypokalemia in 7 patients (18%). Among...
SUMMARYGene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.
ObjectiveChemokine pathways are co-opted by pancreatic adenocarcinoma (PDAC) to facilitate myeloid cell recruitment from the bone marrow to establish an immunosuppressive tumour microenvironment (TME). Targeting tumour-associated CXCR2+neutrophils (TAN) or tumour-associated CCR2+ macrophages (TAM) alone improves antitumour immunity in preclinical models. However, a compensatory influx of an alternative myeloid subset may result in a persistent immunosuppressive TME and promote therapeutic resistance. Here, we show CCR2 and CXCR2 combined blockade reduces total tumour-infiltrating myeloids, promoting a more robust antitumour immune response in PDAC compared with either strategy alone.MethodsBlood, bone marrow and tumours were analysed from PDAC patients and controls. Treatment response and correlative studies were performed in mice with established orthotopic PDAC tumours treated with a small molecule CCR2 inhibitor (CCR2i) and CXCR2 inhibitor (CXCR2i), alone and in combination with chemotherapy.ResultsA systemic increase in CXCR2+ TAN correlates with poor prognosis in PDAC, and patients receiving CCR2i showed increased tumour-infiltrating CXCR2+ TAN following treatment. In an orthotopic PDAC model, CXCR2 blockade prevented neutrophil mobilisation from the circulation and augmented chemotherapeutic efficacy. However, depletion of either CXCR2+ TAN or CCR2+ TAM resulted in a compensatory response of the alternative myeloid subset, recapitulating human disease. This was overcome by combined CCR2i and CXCR2i, which augmented antitumour immunity and improved response to FOLFIRINOX chemotherapy.ConclusionDual targeting of CCR2+ TAM and CXCR2+ TAN improves antitumour immunity and chemotherapeutic response in PDAC compared with either strategy alone.
The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8 ؉ T cells and, to a lesser extent, CD4 ؉ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.