We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.
A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPa is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimers disease.
Microglia are immune cells of the central nervous system and are implicated in brain inflammation. However, how brain microglia modulate transport and metabolism of the essential metal iron in response to pro- and anti-inflammatory environmental cues is unclear. Here, we characterized uptake of transferrin (Tf)-bound iron (TBI) and non-Tf-bound iron (NTBI) by immortalized microglial (IMG) cells. We found that these cells preferentially take up NTBI in response to the proinflammatory stimulus lipopolysaccharide (LPS) or β-amyloid (Aβ). In contrast, the anti-inflammatory cytokine interleukin 4 (IL-4) promoted TBI uptake. Concordant with these functional data, levels of the Tf receptor (TfR) in IMG cells were up-regulated in response to IL-4, whereas divalent metal transporter-1 (DMT1) and ferritin levels increased in response to LPS or Aβ. Similar changes in expression were confirmed in isolated primary adult mouse microglia treated with pro- or anti-inflammatory inducers. LPS-induced changes in IMG cell iron metabolism were accompanied by notable metabolic changes, including increased glycolysis and decreased oxidative respiration. Under these conditions, the extracellular acidification rate was increased, compatible with changes in the cellular microenvironment that would support the pH-dependent function of DMT1. Moreover, LPS increased heme oxygenase-1 (HO1) expression in IMG cells, and iron released because of HO1 activity increased the intracellular labile free-iron pool. Together, this evidence indicates that brain microglia preferentially acquire iron from Tf or from non-Tf sources, depending on their polarization state; that NTBI uptake is enhanced by the proinflammatory response; and that under these conditions microglia sequester both extra- and intracellular iron.
There are two barriers for iron entry into the brain: 1) the brain-cerebrospinal fluid (CSF) barrier and 2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease.
The transcellular trafficking of iron from the blood into the brain interstitium depends on iron uptake proteins in the apical membrane of brain microvascular capillary endothelial cells and efflux proteins at the basolateral, abluminal membrane. In this review, we discuss the three mechanisms by which these cells take-up iron from the blood and the sole mechanism by which they efflux this iron into the abluminal space. We then focus on the regulation of this efflux pathway by exocrine factors that are released from neighboring astrocytes. Also discussed are the cytokines secreted by capillary cells that regulate the expression of these glial cell signals. Among the interstitial factors that regulate iron efflux into the brain is the Amyloid precursor protein (APP). The role of this amyliodogenic species in brain iron metabolism is discussed. Last, we speculate on the potential relationship between iron transport at the blood-brain barrier and neurological disorders associated with iron mismanagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.