We discuss three proposed schemes of initializing circular-state Rydberg atoms via optical couplings provided by the ponderomotive effect in contrast to the current circularization methods that utilize electric-dipole interactions. In our first proposed method, a radial optical trap consisting of two Laguerre-Gaussian beams of opposite winding numbers transfers orbital angular momentum to the Rydberg atom, providing a first-order coherent coupling between an F-state and a circular state. Additionally, we propose a one-dimensional ponderomotive optical lattice modulated at rf frequencies, providing quadrupole-like couplings in the hydrogenic manifold for rapid adiabatic passage through a series of intermediate Rydberg states into the circular state. For the third proposed scheme, a two-dimensional ponderomotive optical lattice with a time-orbiting trap center induces effectively the same coupling as a σ + or σ − -polarized rf field of tunable purity for all-optical rapid adiabatic passage into the circular state.
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum (ℓ), lattice-induced ℓ-mixing across the optical-lattice PECs, and interference of PI transition amplitudes from the lattice-mixed into free-electron states. In GHz-deep lattices, ℓ-mixing leads to a rich PEC structure, and the significant low-ℓ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-ℓ PECs are essentially ℓ-mixing-free and maintain large PI rates, while atoms on high-ℓ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.
We report a measurement of the dynamic (ac) scalar polarizability of the 5D3/2 state in 85Rb atoms at a laser wavelength of 1064 nm. Contrary to a recent measurement in Phys. Rev. A 104, 063304 (2021), the experiments are performed in a low-intensity regime in which the ac shift is less than the 5D3/2 state’s hyperfine structure, as utilized in numerous experiments with cold, trapped atoms. The extracted ac polarizability is α5D3/2=−499±59 a.u., within the uncertainty of the aforementioned previous result. The calibration of the 1064 nm light intensity, performed by analyzing light shifts of the D1 line, is the main source of uncertainty. Our results are useful for applications of the Rb 5D3/2 state in metrology, quantum sensing, and fundamental-physics research on Rydberg atoms and molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.