The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system had a 48-fold dynamic range and was shown to out-perform Ptrc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.
The RNA-guided Cas9 endonuclease from Streptococcus pyogenes is a single turnover enzyme that displays a stable product state after double-stranded DNA cleavage. Here, we present cryo-EM structures of pre-catalytic, post-catalytic, and product states of the active Cas9-sgRNA-DNA complex in the presence of Mg2+. In the pre-catalytic state, Cas9 adopts the “checkpoint” conformation with the HNH nuclease domain positioned far away from the DNA. Transition to the post-catalytic state involves a dramatic ~34 Å swing of the HNH domain and disorder of the REC2 recognition domain. The post-catalytic state captures the cleaved substrate bound to the catalytically competent HNH active site. In the product state, the HNH domain is disordered, REC2 returns to the pre-catalytic conformation, and additional interactions of REC3 and RuvC with nucleic acids are formed. The coupled domain motions and interactions between the enzyme and nucleic acids provide new insights into the mechanism of genome editing by Cas9.
The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.
CRISPR/Cas9 nucleases have enabled powerful, new genome editing capabilities; however, the preponderance of non-homologous end joining (NHEJ) mediated repair events over homology directed repair (HDR) in most cell types limits the ability to engineer precise changes in mammalian genomes. Here, we increase the efficiency of isolating precise HDR-mediated events in mouse embryonic stem (ES) cells by more than 20-fold through the use of co-incidental insertion (COIN) of independent donor DNA sequences. Analysis of on:off-target frequencies at the Lef1 gene revealed that bi-allelic insertion of a PGK-Neo cassette occurred more frequently than expected. Using various selection cassettes targeting multiple loci, we show that the insertion of a selectable marker at one control site frequently coincided with an insertion at an unlinked, independently targeted site, suggesting enrichment of a sub-population of HDR-proficient cells. When individual cell events were tracked using flow cytometry and fluorescent protein markers, individual cells frequently performed either a homology-dependent insertion event or a homology-independent event, but rarely both types of insertions in a single cell. Thus, when HDR-dependent selection donors are used, COIN enriches for HDR-proficient cells among heterogeneous cell populations. When combined with a self-excising selection cassette, COIN provides highly efficient and scarless genome editing.
Our objective in this prospective study was to determine the natural course of Brucella abortus infection in cohorts of seropositive and seronegative, female bison (Bison bison) and their offspring in Yellowstone National Park (YNP) for 5 yr. We collected specimens from 53 adult females and 25 calves at least once and from 45 adults and 22 calves more than once. Annual seroconversion rates (negative to positive) were relatively high (23% for calves and juvenile bison, 6% in the total sample of adult female bison in our study, and 11% in the adult females that began the study as seronegatives). Antibody was not protective against infection, even for calves that passively received antibody from an infected mother's colostrum. Antibody levels stayed remarkably constant, with only a slow decline over time. We found only two seroconversions from a weak positive status to negative. Infected bison aborted and shed viable bacteria. Risk of shedding infective Brucella was highest for bison in the 2 yr following seroconversion from negative to positive. In one bison, we detected shedding for 3 yr following seroconversion. Regardless of serostatus of dams and neonates, most calves were seronegative by 5 mo of age. There was no relationship between the antibody status of the dam and the tendency of a calf to seroconvert to positive during the duration of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.