Methanobacterium thermoautotrophicum ⌬H, isolated in 1971 from sewage sludge in Urbana, Ill. (72), is a lithoautotrophic, thermophilic archaeon that grows at temperatures ranging from 40 to 70°C and optimally at 65°C. M. thermoautotrophicum conserves energy by using H 2 to reduce CO 2 to CH 4 and synthesizes all of its cellular components from these same gaseous substrates plus N 2 or NH 4 ϩ and inorganic salts, but despite this impressive biosynthetic capacity, M. thermoautotrophicum ⌬H and related strains have very small genomes (ϳ1.7 Ϯ 0.2 Mb [57,58]). M. thermoautotrophicum ⌬H, Marburg, and Winter are the foci of many methanogenesis, archaeal physiology, and molecular biology investigations, and M. thermoautotrophicum ⌬H was chosen as a representative of this group for genome sequencing. These thermophilic methanogens have mesophilic and hyperthermophilic relatives, Methanobacterium formicicum and Methanothermus fervidus, respectively, so that comparisons can be made of homologous
Background: With advances in sequencing technology and decreasing costs, the number of phage genomes that have been sequenced has increased markedly in the past decade. Materials and Methods: We developed an automated retrieval and analysis system for phage genomes (https:// github.com/RyanCook94/inphared) to produce the INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and associated metadata. Results: As of January 2021, 14,244 complete phage genomes have been sequenced. The INPHARED data set is dominated by phages that infect a small number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera. There is further bias, with significantly more lytic phage genomes (*70%) than temperate (*30%) within our database. Collectively, this results in *54% of temperate phage genomes originating from just three host genera. With much debate on the carriage of antibiotic resistance genes and their potential safety in phage therapy, we searched for putative antibiotic resistance genes. Frequency of antibiotic resistance gene carriage was found to be higher in temperate phages than in lytic phages and again varied with host. Conclusions: Given the bias of currently sequenced phage genomes, we suggest to fully understand phage diversity, efforts should be made to isolate and sequence a larger number of phages, in particular temperate phages, from a greater diversity of hosts.
Background Viruses are the most abundant biological entities on Earth, known to be crucial components of microbial ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~ 2.7 million dairy cattle in the UK producing 7–8% of their own bodyweight in manure daily, and 28 million tonnes annually. To avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed the virome of agricultural slurry over a 5-month period using short and long-read sequencing. Results Hybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7682 vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all samples over a 5-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic genes and novel features present in the community, including the agriculturally relevant virulence factor VapE, which was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously thought only to be found in the human gut. Conclusions The cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment.
BackgroundViruses are the most abundant biological entities on Earth, known to be crucial components of microbial ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~2.7 million dairy cattle in the UK producing 7-8% of their own bodyweight in manure daily, and 28 million tonnes annually. To avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed the virome of agricultural slurry over a five-month period using short and long-read sequencing.ResultsHybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7,682 vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of which represent novel genera (~98%). Despite constant influx and efflux of slurry, the composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all samples over a five-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic genes and novel features present in the community. Including the agriculturally relevant virulence factor VapE, which was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously thought only to be found in the human gut.ConclusionsThe cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.