The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.
Peptide-based methods represent new approaches to selectively produce nanostructures with potentially important functionality. Unfortunately, biocombinatorial methods can only select peptides with target affinity and not for the properties of the final material. In this work, we present evidence to demonstrate that materials-directing peptides can be controllably modified to substantially enhance particle functionality without significantly altering nanostructural morphology. To this end, modification of selected residues to vary the site-specific binding strength and biological recognition can be employed to increase the catalytic efficiency of peptide-capped Pd nanoparticles. These results represent a step toward the de novo design of materials-directing peptides that control nanoparticle structure/function relationships.
The ability to tune the size, shape, and composition of nanomaterials at length scales <10 nm remains a challenging task. Such capabilities are required to fully realize the application of nanotechnology for catalysis, energy storage, and biomedical technologies. Conversely, nature employs biomacromolecules such as proteins and peptides as highly specific nanoparticle ligands that demonstrate exacting precision over the particle morphology through controlling the biotic/abiotic interface. Here we demonstrate the ability to finely tune the size, surface structure, and functionality of single-crystal Pd nanoparticles between 2 and 3 nm using materials directing peptides. This was achieved by selectively altering the peptide sequence to change the binding motif, which in turn modifies the surface structure of the particles. The materials were fully characterized before and after reduction using atomically resolved spectroscopic and microscopic analyses, which indicated that the coordination environment prior to reduction significantly affects the structure of the final nanoparticles. Additionally, changes to the particle surface structure, as a function of peptide sequence, can allow for chloride ion coordination that alters the catalytic abilities of the materials for the C-C coupling Stille reaction. These results suggest that peptide-based approaches may be able to achieve control over the structure/function relationship of nanomaterials where the peptide sequence could be used to selectivity tune such capabilities.
A lot of pep: Simple changes to the sequence of peptide nanostructures were found to maintain stability and enhance the activity of peptide‐based palladium nanocatalysts. A histidine to alanine substitution in the peptide chain afforded an increase in turnover frequency from 2234 to 5224, which suggests that the peptide modulates the functionality of bio‐inspired nanomaterials.
Leichte Änderungen in der Peptidsequenz erhöhten bei gleichbleibender Stabilität die Aktivität von Palladiumnanokatalysatoren auf Peptidbasis. Ein Austausch von Histidin gegen Alanin steigerte die Umsatzfrequenz von 2234 auf 5224, was für eine modulierende Wirkung des Peptids in den Nanomaterialien spricht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.