Grasses and dung were collected in the Serengeti National Park and analyzed for silica content by wet ashing. Grasses from grasslands differing in the grazing intensities experienced were grown in the laboratory in a factorial experiment to determine factors controlling tissue silicification. Concentrations of silica in tissues of plants collected in the field were higher than have been reported for any other plants abundant in grazing ecosystems. Silica contents in the field were higher in more heavily grazed grasslands and in tissue produced earlier in the growing season. Animal dung contained substantial quantities of silica. Laboratory experiments indicated that tissue silicification was increased by defoliation, was higher in plants from more heavily grazed grasslands, varied in different organs and species in patterns confirming current hypotheses about plant defense, and was affected by the availability of soluble silica in the nutrient medium. Silica in the nutrient medium promoted the yield of unclipped plants substantially. Total yield was 18% higher than that of control plants, although hydroponic experiments with solutions prepared and handled in plastic indicated that silica was not a growth requirement, except, perhaps, at the ecologically unrealistic concentrations that might result from reagent contamination. Yield stimulation by silica was differentially distributed among organs, tending to promote photosynthetically active tissues and crowns. Flowering of one species was promoted by silica. Leaves of silica-fed plants were larger. Leaf blade chlorophyll concentrations were 15% higher in silica-fed plants from the more heavily grazed grasslands. The results suggest that complex patterns of grass silicification had a role in the radiation of grazing animals and grasses and may contribute to maintaining the biotic diversity of contemporary grassland-savanna ecosystems by influencing the partitioning of forage species and organs among grazers. Growth promotion by silica may be due to the substitution of mineral support for carbon-based support associated with the deposition of silica in the intercellular spaces of aerial tissues. Since soils of the Serengeti region commonly have pH levels above neutrality, where the availability of silica is low, silica supply could influence primary productivity and resultant energy and nutrient flow through the trophic web in the native environments of the plants.
Introduced African grasses are invading the grasslands of the Venezuelan savannas and displacing the native grasses. This work, which is part of a program to understand the reasons for the success of the African grasses, specifically investigates whether introduced and native grasses differ in some photosynthetic characteristics.The responses to photon flux density, leaf temperature, leaf-air vapour pressure difference and leaf water potential of leaf photosynthetic rate of two introduced African C grasses (Hyparrhenia rufa and Melinis minutiflora) and of a lowland and a highland population of a native Venezuelan grass (Trachypogon plumosus) grown under controlled conditions were compared. These responses in all three species were typical of tropical C pasture grasses. The introduced grasses had higher maximum leaf conductance, net photosynthetic rates, and optimum temperature (H. rufa only) for photosynthesis than T. plumosus. However, T. plumosus was able to continue photosynthesis to lower leaf water potentials than the two introduced grasses, and the efficiency which it utilized water, light and mineral nutrients to fix carbon were similar to those of the introduced grasses.The higher rates of leaf photosynthesis of the introduced grasses contributed to, but only partially explained, the higher growth rates compared to T. plumosus. The higher growth rates and nutrient concentration of the introduced grasses are consistent with their ability to establish rapidly, compete successfully for resources, and displace T. plumosus from moist, fertile sites. Conversely, the slower growth rate, lower nutrient concentrations, and superior water relations characteristics are consistent with the capacity of T. plumosus to resist invasion by introduced grasses in poorer sites.
Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance-the branched quadrupole trap (BQT)-which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 μs are measured for low velocity (∼0.1 m/s) collisions of droplets with <40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M s in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. We demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.