We explored the integrated role of dietary specialization and feeding periodicity on the response of the gastrointestinal tract of teleosts fishes to short-term (7-10 days) fasting and refeeding. Fasted and fed herbivorous grass carp (Ctenopharyngodon idella), omnivorous channel catfish (Ictalurus punctatus), and carnivorous largemouth bass (Micropterus salmoides) were compared for digestive organ masses, intestinal morphology, gastrointestinal pH, and the specific activities and total intestinal capacities of the intestinal hydrolases aminopeptidase (APN) and maltase and intestinal nutrient transporters. All three species experience intestinal hypertrophy with feeding as noted by significant increases in enterocyte dimensions. Of the three, only I. punctatus experienced a postprandial increase in intestinal length, and only C. idella experienced significant modulation of intestinal microvillus length. Feeding resulted in acidification of the stomachs of I. punctatus and M. salmoides. Predicted to exhibit a relatively modest set of postprandial responses because of their more frequent feeding habits, C. idella only experienced increases in APN and maltase activity with feeding and no significant regulation of nutrient uptake. Significant regulation of hydrolase activities and nutrient uptake were exhibited by I. punctatus and M. salmoides, with I. punctatus experiencing the most comprehensive set of responses. As predicted by food habits, there was an interspecific gradient in intestinal length and glucose uptake extending from longer intestines and greater glucose uptake for the herbivorous C. idella, intermediate lengths and glucose uptake for the omnivorous I. punctatus, and shorter intestines and reduced glucose uptake for the carnivorous M. salmoides. Among teleosts fishes, short episodes of fasting lead to significant alterations in intestinal form and function that are rapidly restored with feeding.
The lack of a stomach is not uncommon amongst teleost fishes, yet our understanding of this reductive specialisation is lacking. The absence of a stomach does not restrict trophic preference, resulting in fishes with very similar alimentary morphology capable of digesting differing diets. We examined the digestive biochemistry of four beloniform fishes: two herbivorous halfbeaks (Hemiramphidae) and two carnivorous needlefish (Belonidae) to determine how these fishes digest their respective diets with their simple, short gut. We found that although the halfbeaks showed significantly greater α-amylase activity than that of the needlefish (P < 0.01), trypsin, lipase, aminopeptidase and maltase activity were not substantially different between the two families. We also found that habitat (freshwater vs. marine) appears to play a significant role in digestive capability, as the two freshwater taxa and the two marine taxa were significantly different (ANOSIM; dietary Gobal R = 0.544, P = 0.001, habitat Global R = 0.437, P = 0.001), despite their phyletic and dietary similarities. Our findings offer partial support for the adaptive modulation hypothesis, support the Plug-Flow Reactor model of digestion in herbivorous halfbeaks and also support the compartmental model of digestion but suggest that another model is required to describe stomachless carnivorous needlefish.
Within the set of risk factors that compromise the conservation of marine biodiversity, one of the least understood concerns is the noise produced by human operations at sea and from land. Many aspects of how noise and other forms of energy may impact the natural balance of the oceans are still unstudied. Substantial attention has been devoted in the last decades to determine the sensitivity to noise of marine mammals—especially cetaceans and pinnipeds—and fish because they are known to possess hearing organs. Recent studies have revealed that a wide diversity of invertebrates are also sensitive to sounds, especially via sensory organs whose original function is to allow maintaining equilibrium in the water column and to sense gravity. Marine invertebrates not only represent the largest proportion of marine biomass and are indicators of ocean health but many species also have important socio-economic values. This review presents the current scientific knowledge on invertebrate bioacoustics (sound production, reception, sensitivity), as well as on how marine invertebrates are affected by anthropogenic noises. It also critically revisits the literature to identify gaps that will frame future research investigating the tolerance to noise of marine ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.