The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca 2+ ions at a longer sarcomere length, commonly referred to as myofilament length dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development. KeywordsFrank-Starling Law of The Heart; Length-Tension Relationship; Sarcomere length; Regulation Frank-Starling's Law of the HeartOver a century ago, Otto Frank in Germany and Ernest Starling in England reported on the relationship between the extent of ventricular filling and pump function of the heart, a phenomenon collectively referred to as Frank-Starling's Law of the Heart. A modern view of this phenomenon [1] (illustrated in Figure 1) holds that there is a unique relationship between end-systolic volume and end-systolic pressure in the heart that is solely determined by contractile state. As a consequence, for a given contractile state, ventricular stroke volume is i) proportional to diastolic filling (i.e. preload), and ii) stroke volume can be maintained in the face of increased aortic pressures (i.e. afterload) simply by increasing preload as illustrated by the two pressure-volume loops in Figure 1. Contractile state, within this framework, can be viewed as any factor that alters end-systolic pressure independently of end-systolic volume and Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Figure 1). The ESPVR-slope is a very useful index of cardiac contractility that can be measured in situ by various methods; a convenient and popular approach is the use of the pressure-volume conductance catheter [2]. The cellular mechanisms that underlie the ESPVR are discussed in the following section. NIH Public Access Relationship between whole heart property and myofilament length dependent activationPump function of the heart is intimately related to force generation, active shortening, and regulation of card...
Blebbistatin (BLEB) is a recently discovered compound that inhibits myosin-II ATPase activity. In this study, we tested BLEB in intact and skinned isolated rat cardiac trabeculae, rat intact myocytes, and single rabbit psoas myofibrils. BLEB (10 muM) reduced twitch force and cell shortening that was reversed by exposure to light. BLEB treatment of skinned trabeculae in the dark (1 hr) reduced Ca(2+)-activated force (EC(50) = 0.38 +/- 0.03 muM). Rapid (<5 ms) BLEB application in Ca(2+)-activated rabbit myofibrils reduced force proportional to [BLEB]. Two-photon Indo1-AM ratio-metric confocal line-scan microscopy revealed no impact of BLEB on the cytosolic Ca(2+) transient. BLEB reduced contractile force in skinned trabeculae without affecting tension-dependent myofilament ATPase activity. We conclude that BLEB specifically uncouples cardiac myofilament activation from Ca(2+) activation without affecting EC coupling or cross-bridge cycling parameters. This agent could be useful to uncouple myofilament contractility from electrical events that lead to sarcoplasmic reticulum Ca(2+) release in the cardiac myocyte (uncoupling agent) However, the compound is very sensitive to light, a property that limits its application to mechanistic physiological studies.
The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform. Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a longer, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform on myofilament force development and cross-bridge cycling kinetics as function of sarcomere length (SL) in tibialis anterior skeletal muscle isolated from wild type (WT) and HM. Skeletal muscle bundles from HM rats exhibited reductions in passive tension, maximal force development, myofilament calcium sensitivity, maximal ATP consumption, and tension cost at both short and long sarcomere length (SL=2.8 µm and SL=3.2 µm, respectively). Moreover, the SL-dependent changes in these parameters were attenuated in HM muscles. Additionally, myofilament Ca2+ activation-relaxation properties were assessed in single isolated myofibrils. Both the rate of tension generation upon Ca2+ activation (kACT) as well as the rate of tension redevelopment following a length perturbation (kTR) were reduced in HM myofibrils compared to WT, while relaxation kinetics were not affected. We conclude that presence of a long isoform of titin in the striated muscle sarcomere is associated with reduced myofilament force development and cross-bridge cycling kinetics, and a blunting of myofilament length dependent activation.
The capacity for skeletal muscle to recover its mass following periods of unloading (regrowth) has been reported to decline with age. Although the mechanisms responsible for the impaired regrowth are not known, it has been suggested that aged muscles have a diminished capacity to sense and subsequently respond to a given amount of mechanical stimuli (mechanosensitivity). To test this hypothesis, extensor digitorum longus muscles from young (2-3 mo) and old (26-27 mo) mice were subjected to intermittent 15% passive stretch (ex vivo) as a source of mechanical stimulation and analyzed for alterations in the phosphorylation of stress-activated protein kinase (p38), ribosomal S6 kinase (p70S6k), and the p54 jun N-terminal kinase (JNK2). The results indicated that the average magnitude of specific tension (mechanical stimuli) induced by 15% stretch was similar in muscles from young and old mice. Young and old muscles also revealed similar increases in the magnitude of mechanically induced p38, p70S6k (threonine/serine 421/424 and threonine 389), and JNK2 phosphorylation. In addition, coincubation experiments demonstrated that the release of locally acting growth factors was not sufficient for the induction of JNK2 phosphorylation, suggesting that JNK2 was activated by a mechanical rather than a mechanical/growth factor-dependent mechanism. Taken together, the results of this study demonstrate that aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.