Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) infection and may serve as an important reservoir of the virus in the body, particularly after depletion of CD4 T cells in HIV/AIDS. Recently, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) was identified as the major restriction factor of HIV-1 infection in myeloid cells. SAMHD1 is targeted for proteolytic degradation by Vpx, a viral protein encoded by HIV-2 and many simian immunodeficiency viruses but not HIV-1. In this study, we assessed SAMHD1 restriction in in vitro differentiated macrophages and in freshly isolated macrophages from the lungs, abdomen, and brain. We found that infection and spread in in vitro cultured monocyte-derived macrophages were highly limited and that Vpx largely relieved the restriction to initial infection, as expected. We observed nearly identical infection and restriction profiles in freshly isolated peripheral blood monocytes, as well as lung (alveolar) and abdominal (peritoneal) macrophages. In contrast, under the same infection conditions, primary brain macrophages (microglia) were highly susceptible to HIV-1 infection despite levels of endogenous SAMHD1 comparable to the other macrophage populations. Addition of Vpx further increased HIV-1 infection under conditions of limiting virus input, and viral spread was robust whether or not SAMHD1 was depleted. These results suggest that HIV-1 infection of peripherally circulating macrophages is effectively restricted by SAMHD1; however, microglia are highly susceptible to infection despite SAMHD1 expression. These data may explain the long-standing observation that HIV-1 infection is often detected in macrophages in the brain, but seldom in other tissues of the body.
In order to track the fate of HIV-1 particles from early entry events through productive infection, we developed a method to visualize HIV-1 DNA reverse transcription complexes by the incorporation and fluorescent labeling of the thymidine analog 5-ethynyl-2=-deoxyuridine (EdU) into nascent viral DNA during cellular entry. Monocyte-derived macrophages were chosen as natural targets of HIV-1, as they do not divide and therefore do not incorporate EdU into chromosomal DNA, which would obscure the detection of intranuclear HIV-1 genomes. Using this approach, we observed distinct EdU puncta in the cytoplasm of infected cells within 12 h postinfection and subsequent accumulation of puncta in the nucleus, which remained stable through 5 days. The depletion of the restriction factor SAMHD1 resulted in a markedly increased number of EdU puncta, allowing efficient quantification of HIV-1 reverse transcription events. Analysis of HIV-1 isolates bearing defined mutations in the capsid protein revealed differences in their cytoplasmic and nuclear accumulation, and data from quantitative PCR analysis closely recapitulated the EdU results. RNA fluorescence in situ hybridization identified actively transcribing, EdUlabeled HIV-1 genomes in productively infected cells, and immunofluorescence analysis confirmed that CDK9, phosphorylated at serine 175, was recruited to RNApositive HIV-1 DNA, providing a means to directly observe transcriptionally active HIV-1 genomes in productively infected cells. Overall, this system allows stable labeling and monitoring of HIV genomic DNA within infected cells during cytoplasmic transit, nuclear import, and mRNA synthesis. IMPORTANCEThe fates of HIV-1 reverse transcription products within infected cells are not well understood. Although previous imaging approaches identified HIV-1 intermediates during early stages of infection, few have connected these events with the later stages that ultimately lead to proviral transcription and the production of progeny virus. Here we developed a technique to label HIV-1 genomes using modified nucleosides, allowing subsequent imaging of cytoplasmic and nuclear HIV-1 DNA in infected monocyte-derived macrophages. We used this technique to track the efficiency of nuclear entry as well as the fates of HIV-1 genomes in productively and nonproductively infected macrophages. We visualized transcriptionally active HIV-1 DNA, revealing that transcription occurs in a subset of HIV-1 genomes in productively infected cells. Collectively, this approach provides new insights into the nature of transcribing HIV-1 genomes and allows us to track the entire course of infection in macrophages, a key target of HIV-1 in infected individuals.KEYWORDS fluorescent-image analysis, human immunodeficiency virus, macrophages H uman immunodeficiency virus type 1 (HIV-1) infection can be viewed as occurring in early (entry) stages, including reverse transcription (RT), nuclear import, and the integration of the viral genome, and late (productive) stages, including viral transcr...
Exaggerated neutrophil activation and formation of neutrophil extracellular traps (NETs) are reported in systemic sclerosis (SSc) but its involvement in SSc pathogenesis is not clear. In the present study we assessed markers of neutrophil activation and NET formation in SSc patients in relation to markers of inflammation and disease phenotype. Factors promoting neutrophil activation in SSc remain largely unknown. Among the neutrophil activating factors, mitochondrial-derived N-formyl methionine (fMet) has been reported in several autoinflammatory conditions. The aim of the current study is to assess whether SSc patients have elevated levels of fMet and the role of fMet in neutrophil-mediated inflammation on SSc pathogenesis. Markers of neutrophil activation (calprotectin, NETs) and levels of fMet were analyzed in plasma from two SSc cohorts (n=80 and n=20, respectively) using ELISA. Neutrophil activation assays were performed in presence or absence of formyl peptide receptor 1 (FPR1) inhibitor cyclosporin H. Elevated levels of calprotectin and NETs were observed in SSc patients as compared to healthy controls (p<0.0001) associating with SSc clinical disease characteristics. Further, SSc patients had elevated levels of circulating fMet as compared to healthy controls (p<0.0001). Consistent with a role for fMet-mediated neutrophil activation, fMet levels correlated with levels of calprotectin and NETs (r=0.34, p=0.002; r=0.29, p<0.01 respectively). Additionally, plasma samples from SSc patients with high levels of fMet induced de novo neutrophil activation through FPR1-dependent mechanisms. Our data for the first time implicates an important role for the mitochondrial component fMet in promoting neutrophil-mediated inflammation in SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.