A comprehensive reference map of all cell types in the human body is necessary for improving our understanding of fundamental biological processes and in diagnosing and treating disease. Highthroughput single-cell RNA sequencing techniques have emerged as powerful tools to identify and characterize cell types in complex and heterogeneous tissues. However, extracting intact cells from tissues and organs is often technically challenging or impossible, for example in heart or brain tissue. Single-nucleus RNA sequencing provides an alternative way to obtain transcriptome profiles of such tissues. To systematically assess the differences between high-throughput single-cell and single-nuclei RNA-seq approaches, we compared Drop-seq and DroNc-seq, two microfluidic-based 3′ RnA capture technologies that profile total cellular and nuclear RNA, respectively, during a time course experiment of human induced pluripotent stem cells (iPSCs) differentiating into cardiomyocytes. Clustering of timeseries transcriptomes from Drop-seq and DroNc-seq revealed six distinct cell types, five of which were found in both techniques. Furthermore, single-cell trajectories reconstructed from both techniques reproduced expected differentiation dynamics. We then applied DroNc-seq to postmortem heart tissue to test its performance on heterogeneous human tissue samples. Our data confirm that DroNcseq yields similar results to Drop-seq on matched samples and can be successfully used to generate reference maps for the human cell atlas.
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.
A comprehensive reference map of all cell types in the human body is necessary for improving our understanding of fundamental biological processes and in diagnosing and treating disease. High-throughput single-cell RNA sequencing techniques have emerged as powerful tools to identify and characterize cell types in complex and heterogeneous tissues. However, extracting intact cells from tissues and organs is often technically challenging or impossible, for example in heart or brain tissue. Single-nucleus RNA sequencing provides an alternative way to obtain transcriptome profiles of such tissues. To systematically assess the differences between high-throughput single-cell and single-nuclei RNA-seq approaches, we compared Drop-seq and DroNc-seq, two microfluidic-based 3’ RNA capture technologies that profile total cellular and nuclear RNA, respectively, during a time course experiment of human induced pluripotent stem cells (iPSCs) differentiating into cardiomyocytes. Clustering of time-series transcriptomes from Drop-seq and DroNc-seq revealed six distinct cell types, five of which were found in both techniques. Furthermore, single-cell trajectories reconstructed from both techniques reproduced expected differentiation dynamics. We then applied DroNc-seq to postmortem heart tissue to test its performance on heterogeneous human tissue samples. We compared the detected cell types from primary tissue with iPSC-derived cardiomyocytes profiled with DroNc-seq. Our data confirm that DroNc-seq yields similar results to Drop-seq on matched samples and can be successfully used to generate reference maps for the human cell atlas.
Advances in high-throughput single-cell mRNA sequencing (scRNA-seq) have been limited till date by technical challenges like tough cell walls and low RNA quantity that prevented transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is used on two yeast species, Saccharomyces cerevisiae, a popular model organism and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat-shocked S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat-shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant yeast species with thicker cell wall compared to S. cerevisiae. Single cell transcriptomes in 39,705 C. albicans cells was characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity. These experiments are among the first high throughput single cell RNA-seq on different yeast species and demonstrate mDrop-seq as an affordable, easily implementable, and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to better understanding of genetic variation in yeasts in response to stimuli and find immediate applications in investigating drug resistance and infection outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.