Historically, association of disease with the major histocompatibility complex (HLA) genes has been tested with HLA alleles that encode antigen-binding affinity. The association with Parkinson disease (PD), however, was discovered with noncoding SNPs in a genome-wide association study (GWAS). We show here that several HLA-region SNPs that have since been associated with PD form two blocks tagged by rs3129882 (p = 9 × 10(-11)) and by rs9268515 and/or rs2395163 (p = 3 × 10(-11)). We investigated whether these SNP-associations were driven by HLA-alleles at adjacent loci. We imputed class I and class II HLA-alleles for 2000 PD cases and 1986 controls from the NeuroGenetics Research Consortium GWAS and sequenced a subset of 194 cases and 204 controls. We were therefore able to assess accuracy of two imputation algorithms against next-generation-sequencing while taking advantage of the larger imputed data sets for disease study. Additionally, we imputed HLA alleles for 843 cases and 856 controls from another GWAS for replication. PD risk was positively associated with the B(∗)07:02_C(∗)07:02_DRB5(∗)01_DRB1(∗)15:01_DQA1(∗)01:02_DQB1(∗)06:02 haplotype and negatively associated with the C(∗)03:04, DRB1(∗)04:04 and DQA1(∗)03:01 alleles. The risk haplotype and DQA1(∗)03:01 lost significance when conditioned on the SNPs, but C(∗)03:04 (OR = 0.72, p = 8 × 10(-6)) and DRB1(∗)04:04 (OR = 0.65, p = 4 × 10(-5)) remained significant. Similarly, rs3129882 and the closely linked rs9268515 and rs2395163 remained significant irrespective of HLA alleles. rs3129882 and rs2395163 are expression quantitative trait loci (eQTLs) for HLA-DR and HLA-DQ (9 × 10(-5) ≥ PeQTL ≥ 2 × 10(-79)), suggesting that HLA gene expression might influence PD. Our data suggest that PD is associated with both structural and regulatory elements in HLA. Furthermore, our study demonstrates that noncoding SNPs in the HLA region can be associated with disease irrespective of HLA alleles, and that observed associations with HLA alleles can sometimes be secondary to a noncoding variant.
Background-Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax +/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury.Methods-RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax −/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin.Results-24 weeks after ONC, Bax +/− mice had significantly less cell loss in their RGC layer than Bax +/+ mice 3 weeks after ONC. Bax +/− and Bax +/+ RGCs exhibited similar patterns of Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/openaccess/authors-rights/aam-terms-v1 *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.