Antarctic krill, Euphausia superba, supports a valuable commercial fishery in the Southwest Atlantic, which holds the highest krill densities and is warming rapidly. The krill catch is increasing, is concentrated in a small area, and has shifted seasonally from summer to autumn/winter. The fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources, with the main goal of safeguarding the large populations of krill-dependent predators. Here we show that, because of the restricted distribution of successfully spawning krill and high inter-annual variability in their biomass, the risk of direct fishery impacts on the krill stock itself might be higher than previously thought. We show how management benefits could be achieved by incorporating uncertainty surrounding key aspects of krill ecology into management decisions, and how knowledge can be improved in these key areas. This improved information may be supplied, in part, by the fishery itself.
Breeding male hornyhead chub Nocomis biguttatus constructed nests in areas with relatively high but less than maximum flow rate and greater than average water depth. Nests comprised c. 3000 pebbles for a total mass of 11 kg. Males selected pebbles of smaller diameter but higher density than pebbles in the immediate vicinity. Thus, nests balanced the risk of mound erosion and energetic cost of nest construction with the benefits of protection from egg predators and a stable internal flow rate for oxygenation. These data help establish environmental management goals for the conservation of N. biguttatus and the lotic ecosystems dependent upon them.
Salp fecal pellets release more bioavailable iron to Southern Ocean phytoplankton than krill fecal pellets Highlights d Salps recycle iron in a more bioavailable form than krill d Per mol fecal pellet carbon, salps release more iron than krill d Possibly, salps increase the carbon fixation potential of the Southern Ocean
Somatic growth of pelagic invertebrates is controlled by temperature and food, both of which vary in space and time. Species-specific growth rate responses to environmental variability may affect populations through changes in reproductive potential; therefore, measuring spatial and temporal variability in growth rates of highly abundant zooplankton is critical to predict the impact of climate change on pelagic ecosystems. Here, we used length frequencies from bi-annual surveys conducted 1 month apart to estimate growth rates of one the most abundant euphausiids in the Southern Ocean, Thysanoessa macrura. We analyzed summer data from 4 separate years (1995, 1998, 2001, and 2004) that varied widely in temperature and primary production. Stations within the surveys were grouped by water characteristics: warm, low salinity Antarctic Circumpolar Current (ACC) water, and cold, saline Bransfield Strait and Weddell Sea (MBW) water, to assess inter-annual and spatial variability in cohort growth. Mid-summer cohort growth rates of T. macrura varied between years and water masses, ranging from −0.037 mm d −1 in MBW water in 2004 to 0.081 mm d −1 in ACC water in 1995. Growth rates were faster in ACC water than in MBW water during all years. Growth rates were strongly correlated with temperature (R 2 = 0.82) but weakly correlated with copepod density (R 2 = 0.38), and were not correlated with chl a concentration (R 2 = 0.11). These results suggest that the growth rates of T. macrura may increase in regions exhibiting warming trends, such as the Antarctic Peninsula. This contrasts with published data on the growth rates of Euphausia superba, which is predicted to be impacted negatively by climate warming.
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.