SummaryThe Botany Array Resource provides the means for obtaining and archiving microarray data for Arabidopsis thaliana as well as biologist-friendly tools for viewing and mining both our own and other's data, for example, from the AtGenExpress Consortium. All the data produced are publicly available through the web interface of the database at http://bbc.botany.utoronto.ca. The database has been designed in accordance with the Minimum Information About a Microarray Experiment [Brazma, A., Hingamp, P., Quackenbush, J. et al. (2001) Minimum information about a microarray experiment (MIAME) -toward standards for microarray data. Nat. Genet. 29, 365] convention -all expression data are associated with the corresponding experimental details. The database is searchable and it also provides a set of useful and easy-to-use web-based data-mining tools for researchers with sophisticated yet understandable output graphics. These include Expression Browser for performing 'electronic Northerns', Expression Angler for identifying genes that are co-regulated with a gene of interest, and Promomer for identifying potential cis-elements in the promoters of individual or co-regulated genes.
The transition from vegetative growth to flower formation is critical for the survival of flowering plants. The plant-specific transcription factor LEAFY (LFY) has central, evolutionarily conserved roles in this process, both in the formation of the first flower and later in floral patterning. We performed genome-wide binding and expression studies to elucidate the molecular mechanisms by which LFY executes these roles. Our study reveals that LFY directs an elaborate regulatory network in control of floral homeotic gene expression. LFY also controls the expression of genes that regulate the response to external stimuli in Arabidopsis. Thus, our findings support a key role for LFY in the coordination of reproductive stage development and disease response programs in plants that may ensure optimal allocation of plant resources for reproductive fitness. Finally, motif analyses reveal a possible mechanism for stage-specific LFY recruitment and suggest a role for LFY in overcoming polycomb repression.
SUMMARYNext-generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time-consuming even in genetically tractable organisms. Here we present a de novo method for rapidly and robustly mapping the physical location of EMS mutations by sequencing a small pooled F 2 population. This method, called Next Generation Mapping (NGM), uses a chastity statistic to quantify the relative contribution of the parental mutant and mapping lines to each SNP in the pooled F 2 population. It then uses this information to objectively localize the candidate mutation based on its exclusive segregation with the mutant parental line. A user-friendly, web-based tool for performing NGM analysis is available at http://bar.utoronto.ca/NGM. We used NGM to identify three genes involved in cell-wall biology in Arabidopsis thaliana, and, in a power analysis, demonstrate success in test mappings using as few as ten F 2 lines and a single channel of Illumina Genome Analyzer data. This strategy can easily be applied to other model organisms, and we expect that it will also have utility in crops and any other eukaryote with a completed genome sequence.
Disruption of gene silencing by Polycomb protein complexes leads to homeotic transformations and altered developmental-phase identity in plants. Here we define short genomic fragments, known as Polycomb response elements (PREs), that direct Polycomb repressive complex 2 (PRC2) placement at developmental genes regulated by silencing in Arabidopsis thaliana. We identify transcription factor families that bind to these PREs, colocalize with PRC2 on chromatin, physically interact with and recruit PRC2, and are required for PRC2-mediated gene silencing in vivo. Two of the cis sequence motifs enriched in the PREs are cognate binding sites for the identified transcription factors and are necessary and sufficient for PRE activity. Thus PRC2 recruitment in Arabidopsis relies in large part on binding of trans-acting factors to cis-localized DNA sequence motifs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.